Some thoughts on deep learning empowering cartography

T. Ai
{"title":"Some thoughts on deep learning empowering cartography","authors":"T. Ai","doi":"10.24294/jgc.v5i2.1670","DOIUrl":null,"url":null,"abstract":"Cartography includes two major tasks: map making and map application, which is inextricably linked to artificial intelligence technology. The cartographic expert system experienced the intelligent expression of symbolism. After the spatial optimization decision of behaviorism intelligent expression, cartography faces the combination of deep learning under connectionism to improve the intelligent level of cartography. This paper discusses three problems about the proposition of “deep learning + cartography”. One is the consistency between the deep learning method and the map space problem solving strategy, based on gradient descent, local correlation, feature reduction and non-linear nature that answer the feasibility of the combination of “deep learning + cartography”; the second is to analyze the challenges faced by the combination of cartography from its unique disciplinary characteristics and technical environment, involving the non-standard organization of map data, professional requirements for sample establishment, the integration of geometric and geographical features, as well as the inherent spatial scale of the map; thirdly, the entry points and specific methods for integrating map making and map application into deep learning are discussed respectively.","PeriodicalId":363659,"journal":{"name":"Journal of Geography and Cartography","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geography and Cartography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24294/jgc.v5i2.1670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cartography includes two major tasks: map making and map application, which is inextricably linked to artificial intelligence technology. The cartographic expert system experienced the intelligent expression of symbolism. After the spatial optimization decision of behaviorism intelligent expression, cartography faces the combination of deep learning under connectionism to improve the intelligent level of cartography. This paper discusses three problems about the proposition of “deep learning + cartography”. One is the consistency between the deep learning method and the map space problem solving strategy, based on gradient descent, local correlation, feature reduction and non-linear nature that answer the feasibility of the combination of “deep learning + cartography”; the second is to analyze the challenges faced by the combination of cartography from its unique disciplinary characteristics and technical environment, involving the non-standard organization of map data, professional requirements for sample establishment, the integration of geometric and geographical features, as well as the inherent spatial scale of the map; thirdly, the entry points and specific methods for integrating map making and map application into deep learning are discussed respectively.
关于深度学习增强制图能力的一些想法
地图学包括地图制作和地图应用两大任务,这与人工智能技术有着千丝万缕的联系。地图专家系统经历了象征主义的智能表达。在行为主义智能表达的空间优化决策之后,地图学面临着连接主义下深度学习的结合,以提高地图学的智能水平。本文讨论了关于“深度学习+制图”命题的三个问题。一是深度学习方法与地图空间问题解决策略的一致性,基于梯度下降、局部相关、特征约简和非线性性质回答了“深度学习+制图”结合的可行性;二是从地图学独特的学科特征和技术环境出发,分析其所面临的挑战,包括地图数据的非标准组织、样本建立的专业要求、几何与地理特征的融合以及地图固有的空间比例尺;第三,分别讨论了地图制作和地图应用与深度学习相结合的切入点和具体方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信