Ahmet Cagri Arican, Engin Hasan Çopur, G. Inalhan, M. U. Salamci
{"title":"State Dependent Regional Pole Assignment Controller Design for a 3-DOF Helicopter Model","authors":"Ahmet Cagri Arican, Engin Hasan Çopur, G. Inalhan, M. U. Salamci","doi":"10.1109/ICUAS57906.2023.10155816","DOIUrl":null,"url":null,"abstract":"For linear systems, a state feedback control law can be easily designed to keep all closed-loop poles inside a specified disk since the locations of the poles are unique. However, its application to nonlinear systems is not so simple. Therefore, this paper introduces a new pole placement method, named as State Dependent Regional Pole Assignment, for nonlinear systems. This proposed method produces a state dependent feedback control law, enabling the eigenvalues of the closed-loop matrix to be placed in a specified disk to achieve the desired control performance characteristics. The effectiveness of the method is tested on the 3 DOF Helicopter experimental setup. To verify its effectiveness, the experimental results of the nonlinear method are compared with those of the linear method.","PeriodicalId":379073,"journal":{"name":"2023 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS57906.2023.10155816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For linear systems, a state feedback control law can be easily designed to keep all closed-loop poles inside a specified disk since the locations of the poles are unique. However, its application to nonlinear systems is not so simple. Therefore, this paper introduces a new pole placement method, named as State Dependent Regional Pole Assignment, for nonlinear systems. This proposed method produces a state dependent feedback control law, enabling the eigenvalues of the closed-loop matrix to be placed in a specified disk to achieve the desired control performance characteristics. The effectiveness of the method is tested on the 3 DOF Helicopter experimental setup. To verify its effectiveness, the experimental results of the nonlinear method are compared with those of the linear method.