{"title":"A Low 1/f Noise CMOS Low-Dropout Regulator with Current-Mode Feedback Buffer Amplifier","authors":"W. Oh, B. Bakkaloglu, B. Aravind, Siew Kuok Hoon","doi":"10.1109/CICC.2006.320913","DOIUrl":null,"url":null,"abstract":"Low-noise, low-dropout (LN-LDO) regulators are critical for supply regulation of deep-submicron analog baseband and RF system-on-chip designs. A low 1/f noise LDO regulator utilizing a chopper stabilized error amplifier is presented. In order to achieve fast response during load transients, a current-mode feedback amplifier (CFA) with an asymmetrical input pair is designed as a second stage. With chopping frequencies up to 1MHz, an output noise spectral density of 32nV/radicHz and PSR of 38dB is achieved at 100kHz. Compared to an equivalent noise density static regulator, the error amplifier silicon area is reduced by 75%. With the current-mode feedback second stage buffer, settling time is reduced by 60% in comparison to an equivalent power consumption voltage mode buffer, achieving 0.6musec settling time for a 50mA load step. The LN-LDO is designed and fabricated on a 0.25 mum CMOS process with five layers of metal, occupying 0.88mm2","PeriodicalId":269854,"journal":{"name":"IEEE Custom Integrated Circuits Conference 2006","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Custom Integrated Circuits Conference 2006","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2006.320913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Low-noise, low-dropout (LN-LDO) regulators are critical for supply regulation of deep-submicron analog baseband and RF system-on-chip designs. A low 1/f noise LDO regulator utilizing a chopper stabilized error amplifier is presented. In order to achieve fast response during load transients, a current-mode feedback amplifier (CFA) with an asymmetrical input pair is designed as a second stage. With chopping frequencies up to 1MHz, an output noise spectral density of 32nV/radicHz and PSR of 38dB is achieved at 100kHz. Compared to an equivalent noise density static regulator, the error amplifier silicon area is reduced by 75%. With the current-mode feedback second stage buffer, settling time is reduced by 60% in comparison to an equivalent power consumption voltage mode buffer, achieving 0.6musec settling time for a 50mA load step. The LN-LDO is designed and fabricated on a 0.25 mum CMOS process with five layers of metal, occupying 0.88mm2