An Instance Segmentation approach to Food Calorie Estimation using Mask R-CNN

Parth Poply, A. J.
{"title":"An Instance Segmentation approach to Food Calorie Estimation using Mask R-CNN","authors":"Parth Poply, A. J.","doi":"10.1145/3432291.3432295","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to build a Deep Learning and Computer vision-based model for estimating the calorie contents of any food item (to an extent) using its picture. Deep Learning-based Convolutional Neural Network (CNN) called Mask R-CNN is used to perform the task of instance segmentation. The Mask R-CNN recognizes distinct instances of distinct food objects and outputs a mask for the food objects. The surface area of the detected food item(s) is then computed using the mask. The surface area along with the calorie per square inch value of the food item is used to estimate the calories present in the food. The developed model achieves a mean average precision (mAP) of about 93.7% on food item detection and an accuracy of about 95.5% on calorie estimation.","PeriodicalId":126684,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Signal Processing and Machine Learning","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Signal Processing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3432291.3432295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The aim of this paper is to build a Deep Learning and Computer vision-based model for estimating the calorie contents of any food item (to an extent) using its picture. Deep Learning-based Convolutional Neural Network (CNN) called Mask R-CNN is used to perform the task of instance segmentation. The Mask R-CNN recognizes distinct instances of distinct food objects and outputs a mask for the food objects. The surface area of the detected food item(s) is then computed using the mask. The surface area along with the calorie per square inch value of the food item is used to estimate the calories present in the food. The developed model achieves a mean average precision (mAP) of about 93.7% on food item detection and an accuracy of about 95.5% on calorie estimation.
基于掩模R-CNN的食物卡路里估计实例分割方法
本文的目的是建立一个基于深度学习和计算机视觉的模型,用于使用图片估计任何食物(在一定程度上)的卡路里含量。基于深度学习的卷积神经网络(CNN)被称为掩码R-CNN,用于执行实例分割任务。面具R-CNN识别不同食物对象的不同实例,并为食物对象输出面具。然后使用口罩计算被检测食品的表面积。食物的表面面积以及每平方英寸的卡路里值被用来估计食物中存在的卡路里。所开发的模型在食品检测上的平均精度(mAP)约为93.7%,在卡路里估计上的精度约为95.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信