{"title":"Exemplar-Based 3D Shape Segmentation in Point Clouds","authors":"Rongqi Qiu, U. Neumann","doi":"10.1109/3DV.2016.29","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of automatic 3D shape segmentation in point cloud representation. Of particular interest are segmentations of noisy real scans, which is a difficult problem in previous works. To guide segmentation of target shape, a small set of pre-segmented exemplar shapes in the same category is adopted. The main idea is to register the target shape with exemplar shapes in a piece-wise rigid manner, so that pieces under the same rigid transformation are more likely to be in the same segment. To achieve this goal, an over-complete set of candidate transformations is generated in the first stage. Then, each transformation is treated as a label and an assignment is optimized over all points. The transformation labels, together with nearest-neighbor transferred segment labels, constitute final labels of target shapes. The method is not dependent on high-order features, and thus robust to noise as can be shown in the experiments on challenging datasets.","PeriodicalId":425304,"journal":{"name":"2016 Fourth International Conference on 3D Vision (3DV)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2016.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper addresses the problem of automatic 3D shape segmentation in point cloud representation. Of particular interest are segmentations of noisy real scans, which is a difficult problem in previous works. To guide segmentation of target shape, a small set of pre-segmented exemplar shapes in the same category is adopted. The main idea is to register the target shape with exemplar shapes in a piece-wise rigid manner, so that pieces under the same rigid transformation are more likely to be in the same segment. To achieve this goal, an over-complete set of candidate transformations is generated in the first stage. Then, each transformation is treated as a label and an assignment is optimized over all points. The transformation labels, together with nearest-neighbor transferred segment labels, constitute final labels of target shapes. The method is not dependent on high-order features, and thus robust to noise as can be shown in the experiments on challenging datasets.