Thermal and Structural Behaviour of Offshore Structures with Passive Fire Protection

E. Oterkus, Sa Jo
{"title":"Thermal and Structural Behaviour of Offshore Structures with Passive Fire Protection","authors":"E. Oterkus, Sa Jo","doi":"10.36956/sms.v4i1.476","DOIUrl":null,"url":null,"abstract":"In offshore structures, hydrocarbon fires cause the structure to loose its rigidity rapidly and this leads to structural integrity and stability problems. The Passive Fire Protection (PFP) system slows the transfer rate of fire heat and helps to prevent the collapse of structures and human losses. The vital design factors are decided in the detailed design stage. The determined design thickness must be accurately applied in the fabrication yard. However, there are many cases that the PFP is overused because of various reasons. This excessive application of the PFP is an unavoidable problem. Several studies have been conducted on the efficient application and optimal design of the PFP. However, the strength of the PFP has not been considered. In addition, research studies on the correlation between the thickness of the PFP and the structural behaviour are not widely available. Therefore, this study attempts to analyse the thermal and mechanical effects of the PFP on the structure when it is applied to the structural member. In particular, it is intended to determine the change in the behaviour of the structural member as the thickness of the PFP increases.","PeriodicalId":215374,"journal":{"name":"Sustainable Marine Structures","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Marine Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36956/sms.v4i1.476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In offshore structures, hydrocarbon fires cause the structure to loose its rigidity rapidly and this leads to structural integrity and stability problems. The Passive Fire Protection (PFP) system slows the transfer rate of fire heat and helps to prevent the collapse of structures and human losses. The vital design factors are decided in the detailed design stage. The determined design thickness must be accurately applied in the fabrication yard. However, there are many cases that the PFP is overused because of various reasons. This excessive application of the PFP is an unavoidable problem. Several studies have been conducted on the efficient application and optimal design of the PFP. However, the strength of the PFP has not been considered. In addition, research studies on the correlation between the thickness of the PFP and the structural behaviour are not widely available. Therefore, this study attempts to analyse the thermal and mechanical effects of the PFP on the structure when it is applied to the structural member. In particular, it is intended to determine the change in the behaviour of the structural member as the thickness of the PFP increases.
被动防火海上结构的热性能和结构性能
在海上结构中,烃类火灾会导致结构迅速失去刚度,从而导致结构完整性和稳定性问题。被动防火(PFP)系统减缓了火灾热量的传递速度,有助于防止建筑物倒塌和人员损失。关键设计因素在详细设计阶段确定。确定的设计厚度必须准确地应用于制造场。然而,在许多情况下,由于各种原因,PFP被过度使用。过度使用PFP是一个不可避免的问题。对PFP的有效应用和优化设计进行了一些研究。然而,PFP的力量并没有被考虑。此外,关于PFP厚度与结构性能之间关系的研究并不广泛。因此,本研究试图分析PFP应用于结构构件时对结构的热效应和力学效应。特别是,它的目的是确定结构成员的行为的变化,因为PFP的厚度增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信