An efficient approximation for the real-time implementation of the Mixture of Trajectory Models decoder

W. Bishop, B.M. Yuy, G. Santhanam, A. Afshar, S. Ryu, K. Shenoy
{"title":"An efficient approximation for the real-time implementation of the Mixture of Trajectory Models decoder","authors":"W. Bishop, B.M. Yuy, G. Santhanam, A. Afshar, S. Ryu, K. Shenoy","doi":"10.1109/BIOCAS.2008.4696892","DOIUrl":null,"url":null,"abstract":"The mixture of trajectory models (MTM) decoder has been used to reconstruct arm trajectories from neural activity. While it produces reasonable results, the computational demands of previously published versions may be too high for many real-time systems. We have developed a novel method of approximating the MTM state posteriors that does not require the use of Newtonpsilas method. We show that this method results in only a small decrease in decoding performance yet reduces computational cost by 56.4%. Additionally, an MTM algorithm using this method of approximating the state posteriors produces more accurate decoded trajectories when using small bin sizes than an MTM algorithm using a Gaussian observation model. The more efficient formulation of the MTM algorithm presented here provides an alternative approximation of this algorithm for use on resource constrained embedded systems.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"510 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The mixture of trajectory models (MTM) decoder has been used to reconstruct arm trajectories from neural activity. While it produces reasonable results, the computational demands of previously published versions may be too high for many real-time systems. We have developed a novel method of approximating the MTM state posteriors that does not require the use of Newtonpsilas method. We show that this method results in only a small decrease in decoding performance yet reduces computational cost by 56.4%. Additionally, an MTM algorithm using this method of approximating the state posteriors produces more accurate decoded trajectories when using small bin sizes than an MTM algorithm using a Gaussian observation model. The more efficient formulation of the MTM algorithm presented here provides an alternative approximation of this algorithm for use on resource constrained embedded systems.
混合轨迹模型解码器实时实现的一种有效逼近
混合轨迹模型(MTM)解码器被用于从神经活动中重建手臂轨迹。虽然它产生了合理的结果,但对于许多实时系统来说,以前发布的版本的计算需求可能太高了。我们开发了一种新的近似MTM状态后验的方法,该方法不需要使用牛顿法。结果表明,该方法的译码性能仅略有下降,但计算成本降低了56.4%。此外,与使用高斯观测模型的MTM算法相比,使用这种近似状态后验的方法的MTM算法在使用小桶大小时产生更准确的解码轨迹。这里提出的更有效的MTM算法公式提供了该算法的另一种近似方法,用于资源受限的嵌入式系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信