Seq2Bubbles

Qitian Wu, Chenxiao Yang, Shuodian Yu, Xiaofeng Gao, Guihai Chen
{"title":"Seq2Bubbles","authors":"Qitian Wu, Chenxiao Yang, Shuodian Yu, Xiaofeng Gao, Guihai Chen","doi":"10.1145/3459637.3482296","DOIUrl":null,"url":null,"abstract":"User behavior sequences contain rich information about user interests and are exploited to predict user's future clicking in sequential recommendation. Existing approaches, especially recently proposed deep learning models, often embed a sequence of clicked items into a single vector, i.e., a point in vector space, which suffer from limited expressiveness for complex distributions of user interests with multi-modality and heterogeneous concentration. In this paper, we propose a new representation model, named as Seq2Bubbles, for sequential user behaviors via embedding an input sequence into a set of bubbles each of which is represented by a center vector and a radius vector in embedding space. The bubble embedding can effectively identify and accommodate multi-modal user interests and diverse concentration levels. Furthermore, we design an efficient scheme to compute distance between a target item and the bubble embedding of a user sequence to achieve next-item recommendation. We also develop a self-supervised contrastive loss based on our bubble embeddings as an effective regularization approach. Extensive experiments on four benchmark datasets demonstrate that our bubble embedding can consistently outperform state-of-the-art sequential recommendation models.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

User behavior sequences contain rich information about user interests and are exploited to predict user's future clicking in sequential recommendation. Existing approaches, especially recently proposed deep learning models, often embed a sequence of clicked items into a single vector, i.e., a point in vector space, which suffer from limited expressiveness for complex distributions of user interests with multi-modality and heterogeneous concentration. In this paper, we propose a new representation model, named as Seq2Bubbles, for sequential user behaviors via embedding an input sequence into a set of bubbles each of which is represented by a center vector and a radius vector in embedding space. The bubble embedding can effectively identify and accommodate multi-modal user interests and diverse concentration levels. Furthermore, we design an efficient scheme to compute distance between a target item and the bubble embedding of a user sequence to achieve next-item recommendation. We also develop a self-supervised contrastive loss based on our bubble embeddings as an effective regularization approach. Extensive experiments on four benchmark datasets demonstrate that our bubble embedding can consistently outperform state-of-the-art sequential recommendation models.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信