Lohith Ravuru, Hyungtak Choi, M. SiddarthK., Hojung Lee, Inchul Hwang
{"title":"Paraphrase Generation Based on VAE and Pointer-Generator Networks","authors":"Lohith Ravuru, Hyungtak Choi, M. SiddarthK., Hojung Lee, Inchul Hwang","doi":"10.1109/ASRU46091.2019.9003874","DOIUrl":null,"url":null,"abstract":"Paraphrase generation is a challenging task that involves expressing the meaning of a sentence using synonyms or different phrases, either to achieve variations or a certain stylistic response. Most previous sequence-to-sequence (Seq2Seq) models focus on either generating variations or preserving the content. We mainly address the issue of preserving the content in a sentence while generating diverse paraphrases. In this paper, we propose a novel approach for paraphrase generation using variational autoencoder (VAE) and Pointer Generator Network (PGN). The proposed model uses a copy mechanism to control the content transfer, a VAE to introduce variations and a training technique to restrict the gradient flow for efficient learning. Our evaluations on QUORA and MS COCO datasets show that our model outperforms the state-of-the-art approaches and the generated paraphrases are highly diverse as well as consistent with their original meaning.","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9003874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Paraphrase generation is a challenging task that involves expressing the meaning of a sentence using synonyms or different phrases, either to achieve variations or a certain stylistic response. Most previous sequence-to-sequence (Seq2Seq) models focus on either generating variations or preserving the content. We mainly address the issue of preserving the content in a sentence while generating diverse paraphrases. In this paper, we propose a novel approach for paraphrase generation using variational autoencoder (VAE) and Pointer Generator Network (PGN). The proposed model uses a copy mechanism to control the content transfer, a VAE to introduce variations and a training technique to restrict the gradient flow for efficient learning. Our evaluations on QUORA and MS COCO datasets show that our model outperforms the state-of-the-art approaches and the generated paraphrases are highly diverse as well as consistent with their original meaning.