Machine Learning Based Automatic Sport Event Detection and Counting

Qingchao Zeng, Jun Liu, Dongya Yang, Yichuan He, Xueyan Sun, Ruixiang Li, Fang Wang
{"title":"Machine Learning Based Automatic Sport Event Detection and Counting","authors":"Qingchao Zeng, Jun Liu, Dongya Yang, Yichuan He, Xueyan Sun, Ruixiang Li, Fang Wang","doi":"10.1109/IC-NIDC54101.2021.9660509","DOIUrl":null,"url":null,"abstract":"Sport event detection is an important task in the research area of human behavior recognition. Owing to different motion models of different sport events, existing general human pose recognition methods cannot achieve high accuracy for sport events detection and counting. In this paper, we propose and implement a sport event detection and counting algorithm framework based on human skeletal information. Experimental evaluation results demonstrate that the algorithm can accurately detect the sit-up events and count the number of sit-ups with the highest average accuracy of 96%.","PeriodicalId":264468,"journal":{"name":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-NIDC54101.2021.9660509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sport event detection is an important task in the research area of human behavior recognition. Owing to different motion models of different sport events, existing general human pose recognition methods cannot achieve high accuracy for sport events detection and counting. In this paper, we propose and implement a sport event detection and counting algorithm framework based on human skeletal information. Experimental evaluation results demonstrate that the algorithm can accurately detect the sit-up events and count the number of sit-ups with the highest average accuracy of 96%.
基于机器学习的运动事件自动检测与计数
运动事件检测是人类行为识别研究领域的重要课题。由于不同运动项目的运动模型不同,现有的一般人体姿态识别方法在运动项目检测和计数中无法达到较高的准确率。本文提出并实现了一种基于人体骨骼信息的体育赛事检测与计数算法框架。实验评估结果表明,该算法能够准确地检测出仰卧起坐事件,统计出仰卧起坐的次数,平均准确率最高达到96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信