Robust Guidance Algorithm against Hypersonic Targets

Jian Chen, Yu Han, Yuan Ren
{"title":"Robust Guidance Algorithm against Hypersonic Targets","authors":"Jian Chen, Yu Han, Yuan Ren","doi":"10.5772/INTECHOPEN.84655","DOIUrl":null,"url":null,"abstract":"This chapter presents a robust guidance algorithm for intercepting hypersonic targets. Since the differential of the line-of-sight rate is more sensitive to the target maneuver, a nonlinear proportional and differential guidance law (NPDG) is given by employing the differential of the line-of-sight rate produced by a nonlinear tracking differentiator. Based on the NPDG, a fractional calculus guidance law (FCG) is presented by utilizing the differential definition of fractional order. On the basis of interceptor-target relative motions, the stability criteria of the guidance system of the FCG are deduced. In different target maneuver and noisy cases, simulation results verify that the proposed guidance laws have small miss distances and the FCG has a stronger robustness.","PeriodicalId":143569,"journal":{"name":"Military Engineering","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.84655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter presents a robust guidance algorithm for intercepting hypersonic targets. Since the differential of the line-of-sight rate is more sensitive to the target maneuver, a nonlinear proportional and differential guidance law (NPDG) is given by employing the differential of the line-of-sight rate produced by a nonlinear tracking differentiator. Based on the NPDG, a fractional calculus guidance law (FCG) is presented by utilizing the differential definition of fractional order. On the basis of interceptor-target relative motions, the stability criteria of the guidance system of the FCG are deduced. In different target maneuver and noisy cases, simulation results verify that the proposed guidance laws have small miss distances and the FCG has a stronger robustness.
高超声速目标鲁棒制导算法
本章提出了一种拦截高超声速目标的鲁棒制导算法。由于视距速率的微分对目标机动更为敏感,利用非线性跟踪微分器产生的视距速率的微分给出了非线性比例微分制导律。在NPDG的基础上,利用分数阶的微分定义,提出了分数阶微积分制导律。基于拦截目标的相对运动,推导了FCG制导系统的稳定性判据。仿真结果表明,在不同目标机动和噪声情况下,所提出的制导律具有较小的脱靶量,具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信