A new method for determining the Tikhonov regularization parameter of load identification

Wei Gao, Kaiping Yu
{"title":"A new method for determining the Tikhonov regularization parameter of load identification","authors":"Wei Gao, Kaiping Yu","doi":"10.1117/12.2180739","DOIUrl":null,"url":null,"abstract":"A new method based on quadratic programming theory is proposed to determine the regularization parameter. A function whose variable is the derivative with respect to the regularization parameter is formulated. Based on the property that the value of the function is very dependent on the regularization parameter, the optimal parameters can be determined by using quadratic programming theory. A numerical example is utilized to select the parameters through the method. It is concluded that the new method can effectively overcome the ill-posed problems from an ill-conditioned system matrix, and that it can obtain an approximate solution with higher accuracy, fine stability and effective noise resistance.","PeriodicalId":380636,"journal":{"name":"Precision Engineering Measurements and Instrumentation","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering Measurements and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2180739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A new method based on quadratic programming theory is proposed to determine the regularization parameter. A function whose variable is the derivative with respect to the regularization parameter is formulated. Based on the property that the value of the function is very dependent on the regularization parameter, the optimal parameters can be determined by using quadratic programming theory. A numerical example is utilized to select the parameters through the method. It is concluded that the new method can effectively overcome the ill-posed problems from an ill-conditioned system matrix, and that it can obtain an approximate solution with higher accuracy, fine stability and effective noise resistance.
一种确定载荷识别吉洪诺夫正则化参数的新方法
提出了一种基于二次规划理论确定正则化参数的新方法。给出了一个函数,其变量是对正则化参数的导数。基于函数值与正则化参数有很大关系的特性,利用二次规划理论确定最优参数。通过数值算例,对该方法进行了参数选择。结果表明,该方法能有效地克服由病态系统矩阵引起的不适定问题,并能获得精度高、稳定性好、抗噪性好的近似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信