Using XG Boost and Random Forest Classifier Algorithms to Predict Student Behavior

Ha Thi The Nguyen, Ling-Hsiu Chen, Vani Suthamathi Saravanarajan, H. Pham
{"title":"Using XG Boost and Random Forest Classifier Algorithms to Predict Student Behavior","authors":"Ha Thi The Nguyen, Ling-Hsiu Chen, Vani Suthamathi Saravanarajan, H. Pham","doi":"10.1109/ETI4.051663.2021.9619217","DOIUrl":null,"url":null,"abstract":"Students study in an online environment, the problems relate to reaction based on evaluation of student’s performance and students’ skills to understand the student behavior. In this paper, for students in an online environment, techniques for connecting the students’ skills and the online reactions about behavior via their evaluation are considered. An example about students from a Brazilian University of an introductory class of Algorithms for explorative data analysis is applied, an instrument for XGBoost analysis and RandomForestClassifier. A base for evaluation of student achievement is the analysis of behavior. This idea is based on studies that discussed the use of social features in the actual classroom of the project.","PeriodicalId":129682,"journal":{"name":"2021 Emerging Trends in Industry 4.0 (ETI 4.0)","volume":"1081 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Emerging Trends in Industry 4.0 (ETI 4.0)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETI4.051663.2021.9619217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Students study in an online environment, the problems relate to reaction based on evaluation of student’s performance and students’ skills to understand the student behavior. In this paper, for students in an online environment, techniques for connecting the students’ skills and the online reactions about behavior via their evaluation are considered. An example about students from a Brazilian University of an introductory class of Algorithms for explorative data analysis is applied, an instrument for XGBoost analysis and RandomForestClassifier. A base for evaluation of student achievement is the analysis of behavior. This idea is based on studies that discussed the use of social features in the actual classroom of the project.
使用XG Boost和随机森林分类器算法预测学生行为
学生在网络环境中学习,问题涉及基于对学生表现的评价和学生理解学生行为的技能的反应。在本文中,对于在线环境中的学生,考虑了通过他们的评估将学生的技能与在线对行为的反应联系起来的技术。本文以巴西一所大学的学生为例,介绍了探索性数据分析的算法,XGBoost分析和RandomForestClassifier的工具。评价学生成绩的基础是对行为的分析。这个想法是基于研究,讨论了在实际的课堂上使用社交功能的项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信