Combined Application of Approximate Computing Techniques in DNN Hardware Accelerators

Enrico Russo, M. Palesi, Davide Patti, Habiba Lahdhiri, Salvatore Monteleone, G. Ascia, V. Catania
{"title":"Combined Application of Approximate Computing Techniques in DNN Hardware Accelerators","authors":"Enrico Russo, M. Palesi, Davide Patti, Habiba Lahdhiri, Salvatore Monteleone, G. Ascia, V. Catania","doi":"10.1109/IPDPSW55747.2022.00013","DOIUrl":null,"url":null,"abstract":"This paper applies Approximate Computing (AC) techniques to the main elements which form a DNN hardware accelerator, namely, computation, communication, and memory subsystems. Specifically, approximate multipliers for computation, link voltage swing reduction for communication, voltage over-scaling for the internal SRAM memory, and lossy compression of the external DRAM memory are considered. The different AC techniques are applied in isolation as well as in conjunction with each other. A set of representative CNN models are mapped onto the approximated hardware accelerators and the trade-offs performance vs. energy vs. accuracy are derived for the execution of CNN inferences.","PeriodicalId":286968,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW55747.2022.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper applies Approximate Computing (AC) techniques to the main elements which form a DNN hardware accelerator, namely, computation, communication, and memory subsystems. Specifically, approximate multipliers for computation, link voltage swing reduction for communication, voltage over-scaling for the internal SRAM memory, and lossy compression of the external DRAM memory are considered. The different AC techniques are applied in isolation as well as in conjunction with each other. A set of representative CNN models are mapped onto the approximated hardware accelerators and the trade-offs performance vs. energy vs. accuracy are derived for the execution of CNN inferences.
近似计算技术在DNN硬件加速器中的联合应用
本文将近似计算(AC)技术应用于构成深度神经网络硬件加速器的主要元素,即计算、通信和存储子系统。具体来说,计算的近似乘法器,通信的链路电压摆动减小,内部SRAM存储器的电压过标度,以及外部DRAM存储器的有损压缩都被考虑在内。不同的交流技术既可以单独应用,也可以相互结合使用。将一组代表性的CNN模型映射到近似的硬件加速器上,并推导出执行CNN推理的性能、能量和精度之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信