Asynchronous distributed state estimation for continuous-time stochastic processes

Z. Kowalczuk, M. Domzalski
{"title":"Asynchronous distributed state estimation for continuous-time stochastic processes","authors":"Z. Kowalczuk, M. Domzalski","doi":"10.2478/amcs-2013-0025","DOIUrl":null,"url":null,"abstract":"The problem of state estimation of a continuous-time stochastic process using an Asynchronous Distributed multi-sensor Estimation (ADE) system is considered. The state of a process of interest is estimated by a group of local estimators constituting the proposed ADE system. Each estimator is based, e.g., on a Kalman filter and performs single sensor filtration and fusion of its local results with the results from other/remote processors to compute possibly the best state estimates. In performing data fusion, however, two important issues need to be addressed namely, the problem of asynchronism of local processors and the issue of unknown correlation between asynchronous data in local processors. Both the problems, along with their solutions, are investigated in this paper. Possible applications and effectiveness of the proposed ADE approach are illustrated by simulated experiments, including a non-complete connection graph of such a distributed estimation system.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amcs-2013-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The problem of state estimation of a continuous-time stochastic process using an Asynchronous Distributed multi-sensor Estimation (ADE) system is considered. The state of a process of interest is estimated by a group of local estimators constituting the proposed ADE system. Each estimator is based, e.g., on a Kalman filter and performs single sensor filtration and fusion of its local results with the results from other/remote processors to compute possibly the best state estimates. In performing data fusion, however, two important issues need to be addressed namely, the problem of asynchronism of local processors and the issue of unknown correlation between asynchronous data in local processors. Both the problems, along with their solutions, are investigated in this paper. Possible applications and effectiveness of the proposed ADE approach are illustrated by simulated experiments, including a non-complete connection graph of such a distributed estimation system.
连续时间随机过程的异步分布状态估计
研究了用异步分布式多传感器估计系统对连续时间随机过程进行状态估计的问题。过程的状态由一组局部估计器组成提议的ADE系统进行估计。例如,每个估计器都基于卡尔曼滤波器,并执行单传感器滤波,并将其本地结果与来自其他/远程处理器的结果融合,以计算可能的最佳状态估计。然而,在进行数据融合时,需要解决两个重要的问题,即本地处理器的异步问题和本地处理器中异步数据之间未知的相关性问题。本文对这两个问题及其解决方法进行了研究。通过仿真实验,包括这种分布式估计系统的非完全连接图,说明了所提出的ADE方法的可能应用和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信