Predicting transformed audio descriptors: a system design and evaluation

G. Coleman, F. Villavicencio
{"title":"Predicting transformed audio descriptors: a system design and evaluation","authors":"G. Coleman, F. Villavicencio","doi":"10.1145/1878003.1878006","DOIUrl":null,"url":null,"abstract":"We propose and present an example system design for predicting changes in perceptually relevant audio properties under the effects of common musical and sonic transformations. By building these predictive models, we may facilitate descriptor-driven control of effects while avoiding queries to the transformation itself. In this study we model spectral descriptors of a limited class of sounds under the resampling transformation with Support Vector Regression (SVR) and report on the accuracy of the predictions, with an emphasis on performance as a function of model parameters. On a test set of resampled inputs, the statistical model predicts an output filter bank within 3-4 times the mean absolute error of a comparable analytical model.","PeriodicalId":376239,"journal":{"name":"Proceedings of 3rd international workshop on Machine learning and music - MML '10","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd international workshop on Machine learning and music - MML '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1878003.1878006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose and present an example system design for predicting changes in perceptually relevant audio properties under the effects of common musical and sonic transformations. By building these predictive models, we may facilitate descriptor-driven control of effects while avoiding queries to the transformation itself. In this study we model spectral descriptors of a limited class of sounds under the resampling transformation with Support Vector Regression (SVR) and report on the accuracy of the predictions, with an emphasis on performance as a function of model parameters. On a test set of resampled inputs, the statistical model predicts an output filter bank within 3-4 times the mean absolute error of a comparable analytical model.
预测转换后的音频描述符:一个系统设计与评估
我们提出并提出了一个示例系统设计,用于预测在常见音乐和声音转换的影响下感知相关音频属性的变化。通过构建这些预测模型,我们可以促进描述符驱动的效果控制,同时避免对转换本身的查询。在本研究中,我们使用支持向量回归(SVR)对重采样变换下有限类别声音的频谱描述符进行建模,并报告了预测的准确性,重点是性能作为模型参数的函数。在重采样输入的测试集上,统计模型预测输出滤波器组的平均绝对误差是可比分析模型的3-4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信