IRIS

Anthony Kougkas, H. Devarajan, Xian-He Sun
{"title":"IRIS","authors":"Anthony Kougkas, H. Devarajan, Xian-He Sun","doi":"10.1145/3205289.3205322","DOIUrl":null,"url":null,"abstract":"There is an ocean of available storage solutions in modern high-performance and distributed systems. These solutions consist of Parallel File Systems (PFS) for the more traditional high-performance computing (HPC) systems and of Object Stores for emerging cloud environments. More of ten than not, these storage solutions are tied to specific APIs and data models and thus, bind developers, applications, and entire computing facilities to using certain interfaces. Each storage system is designed and optimized for certain applications but does not perform well for others. Furthermore, modern applications have become more and more complex consisting of a collection of phases with different computation and I/O requirements. In this paper, we propose a unified storage access system, called IRIS (i.e., I/O Redirection via Integrated Storage). IRIS enables unified data access and seamlessly bridges the semantic gap between file systems and object stores. With IRIS, emerging High-Performance Data Analytics software has capable and diverse I/O support. IRIS can bring us closer to the convergence of HPC and Cloud environments by combining the best storage subsystems from both worlds. Experimental results show that IRIS can grant more than 7x improvement in performance than existing solutions.","PeriodicalId":441217,"journal":{"name":"Proceedings of the 2018 International Conference on Supercomputing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3205289.3205322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

There is an ocean of available storage solutions in modern high-performance and distributed systems. These solutions consist of Parallel File Systems (PFS) for the more traditional high-performance computing (HPC) systems and of Object Stores for emerging cloud environments. More of ten than not, these storage solutions are tied to specific APIs and data models and thus, bind developers, applications, and entire computing facilities to using certain interfaces. Each storage system is designed and optimized for certain applications but does not perform well for others. Furthermore, modern applications have become more and more complex consisting of a collection of phases with different computation and I/O requirements. In this paper, we propose a unified storage access system, called IRIS (i.e., I/O Redirection via Integrated Storage). IRIS enables unified data access and seamlessly bridges the semantic gap between file systems and object stores. With IRIS, emerging High-Performance Data Analytics software has capable and diverse I/O support. IRIS can bring us closer to the convergence of HPC and Cloud environments by combining the best storage subsystems from both worlds. Experimental results show that IRIS can grant more than 7x improvement in performance than existing solutions.
虹膜
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信