MobiSR

Royson Lee, Stylianos I. Venieris, L. Dudziak, S. Bhattacharya, Nicholas D. Lane
{"title":"MobiSR","authors":"Royson Lee, Stylianos I. Venieris, L. Dudziak, S. Bhattacharya, Nicholas D. Lane","doi":"10.1145/3300061.3345455","DOIUrl":null,"url":null,"abstract":"In recent years, convolutional networks have demonstrated unprecedented performance in the image restoration task of super-resolution (SR). SR entails the upscaling of a single low-resolution image in order to meet application-specific image quality demands and plays a key role in mobile devices. To comply with privacy regulations and reduce the overhead of cloud computing, executing SR models locally on-device constitutes a key alternative approach. Nevertheless, the excessive compute and memory requirements of SR workloads pose a challenge in mapping SR networks on resource-constrained mobile platforms. This work presents MobiSR, a novel framework for performing efficient super-resolution on-device. Given a target mobile platform, the proposed framework considers popular model compression techniques and traverses the design space to reach the highest performing trade-off between image quality and processing speed. At run time, a novel scheduler dispatches incoming image patches to the appropriate model-engine pair based on the patch's estimated upscaling difficulty in order to meet the required image quality with minimum processing latency. Quantitative evaluation shows that the proposed framework yields on-device SR designs that achieve an average speedup of 2.13x over highly-optimized parallel difficulty-unaware mappings and 4.79x over highly-optimized single compute engine implementations.","PeriodicalId":223523,"journal":{"name":"The 25th Annual International Conference on Mobile Computing and Networking","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 25th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3300061.3345455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

Abstract

In recent years, convolutional networks have demonstrated unprecedented performance in the image restoration task of super-resolution (SR). SR entails the upscaling of a single low-resolution image in order to meet application-specific image quality demands and plays a key role in mobile devices. To comply with privacy regulations and reduce the overhead of cloud computing, executing SR models locally on-device constitutes a key alternative approach. Nevertheless, the excessive compute and memory requirements of SR workloads pose a challenge in mapping SR networks on resource-constrained mobile platforms. This work presents MobiSR, a novel framework for performing efficient super-resolution on-device. Given a target mobile platform, the proposed framework considers popular model compression techniques and traverses the design space to reach the highest performing trade-off between image quality and processing speed. At run time, a novel scheduler dispatches incoming image patches to the appropriate model-engine pair based on the patch's estimated upscaling difficulty in order to meet the required image quality with minimum processing latency. Quantitative evaluation shows that the proposed framework yields on-device SR designs that achieve an average speedup of 2.13x over highly-optimized parallel difficulty-unaware mappings and 4.79x over highly-optimized single compute engine implementations.
MobiSR
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信