{"title":"ParKerC: Toolbox for Parallel Kernel Clustering Methods","authors":"S. Mouysset, R. Guivarch","doi":"10.1049/cp.2019.0253","DOIUrl":null,"url":null,"abstract":"A large variety of fields such as biology, information retrieval, image segmentation needs unsupervised methods able to gather data without a priori information on shapes or locality. By investigating a parallel strategy based on overlapping domain decomposition, we present a toolbox which is a parallel implementation of two fully unsupervised kernel methods respectively based on density-based properties and spectral properties in order to treat large data sets in fields of pattern recognition.","PeriodicalId":397398,"journal":{"name":"10th International Conference on Pattern Recognition Systems (ICPRS-2019)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th International Conference on Pattern Recognition Systems (ICPRS-2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/cp.2019.0253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A large variety of fields such as biology, information retrieval, image segmentation needs unsupervised methods able to gather data without a priori information on shapes or locality. By investigating a parallel strategy based on overlapping domain decomposition, we present a toolbox which is a parallel implementation of two fully unsupervised kernel methods respectively based on density-based properties and spectral properties in order to treat large data sets in fields of pattern recognition.