On Connectivity in a General Random Intersection Graph

Jun Zhao, Panpan Zhang
{"title":"On Connectivity in a General Random Intersection Graph","authors":"Jun Zhao, Panpan Zhang","doi":"10.1137/1.9781611974324.12","DOIUrl":null,"url":null,"abstract":"There has been growing interest in studies of general random intersection graphs. In this paper, we consider a general random intersection graph $\\mathbb{G}(n,\\overrightarrow{a}, \\overrightarrow{K_n},P_n)$ defined on a set $\\mathcal{V}_n$ comprising $n$ vertices, where $\\overrightarrow{a}$ is a probability vector $(a_1,a_2,\\ldots,a_m)$ and $\\overrightarrow{K_n}$ is $(K_{1,n},K_{2,n},\\ldots,K_{m,n})$. This graph has been studied in the literature including a most recent work by Yagan [arXiv:1508.02407]. Suppose there is a pool $\\mathcal{P}_n$ consisting of $P_n$ distinct objects. The $n$ vertices in $\\mathcal{V}_n$ are divided into $m$ groups $\\mathcal{A}_1, \\mathcal{A}_2, \\ldots, \\mathcal{A}_m$. Each vertex $v$ is independently assigned to exactly a group according to the probability distribution with $\\mathbb{P}[v \\in \\mathcal{A}_i]= a_i$, where $i=1,2,\\ldots,m$. Afterwards, each vertex in group $\\mathcal{A}_i$ independently chooses $K_{i,n}$ objects uniformly at random from the object pool $\\mathcal{P}_n$. Finally, an undirected edge is drawn between two vertices in $\\mathcal{V}_n$ that share at least one object. This graph model $\\mathbb{G}(n,\\overrightarrow{a}, \\overrightarrow{K_n},P_n)$ has applications in secure sensor networks and social networks. We investigate connectivity in this general random intersection graph $\\mathbb{G}(n,\\overrightarrow{a}, \\overrightarrow{K_n},P_n)$ and present a sharp zero-one law. Our result is also compared with the zero-one law established by Yagan.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974324.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

There has been growing interest in studies of general random intersection graphs. In this paper, we consider a general random intersection graph $\mathbb{G}(n,\overrightarrow{a}, \overrightarrow{K_n},P_n)$ defined on a set $\mathcal{V}_n$ comprising $n$ vertices, where $\overrightarrow{a}$ is a probability vector $(a_1,a_2,\ldots,a_m)$ and $\overrightarrow{K_n}$ is $(K_{1,n},K_{2,n},\ldots,K_{m,n})$. This graph has been studied in the literature including a most recent work by Yagan [arXiv:1508.02407]. Suppose there is a pool $\mathcal{P}_n$ consisting of $P_n$ distinct objects. The $n$ vertices in $\mathcal{V}_n$ are divided into $m$ groups $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_m$. Each vertex $v$ is independently assigned to exactly a group according to the probability distribution with $\mathbb{P}[v \in \mathcal{A}_i]= a_i$, where $i=1,2,\ldots,m$. Afterwards, each vertex in group $\mathcal{A}_i$ independently chooses $K_{i,n}$ objects uniformly at random from the object pool $\mathcal{P}_n$. Finally, an undirected edge is drawn between two vertices in $\mathcal{V}_n$ that share at least one object. This graph model $\mathbb{G}(n,\overrightarrow{a}, \overrightarrow{K_n},P_n)$ has applications in secure sensor networks and social networks. We investigate connectivity in this general random intersection graph $\mathbb{G}(n,\overrightarrow{a}, \overrightarrow{K_n},P_n)$ and present a sharp zero-one law. Our result is also compared with the zero-one law established by Yagan.
关于一般随机交图的连通性
人们对一般随机交图的研究越来越感兴趣。本文考虑一个一般随机相交图$\mathbb{G}(n,\overrightarrow{a}, \overrightarrow{K_n},P_n)$,定义在包含$n$顶点的集合$\mathcal{V}_n$上,其中$\overrightarrow{a}$是一个概率向量$(a_1,a_2,\ldots,a_m)$, $\overrightarrow{K_n}$是$(K_{1,n},K_{2,n},\ldots,K_{m,n})$。这个图已经在文献中进行了研究,包括Yagan最近的工作[arXiv:1508.02407]。假设有一个池$\mathcal{P}_n$,由$P_n$不同的对象组成。$\mathcal{V}_n$中的$n$顶点被分成$m$组$\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_m$。每个顶点$v$根据$\mathbb{P}[v \in \mathcal{a}_i]= a_i$的概率分布独立地分配给恰好一个组,其中$i=1,2,\ldots,m$。然后,组$\mathcal{A}_i$中的每个顶点独立地从对象池$\mathcal{P}_n$中均匀随机地选择$K_{i,n}$对象。最后,在$\mathcal{V}_n$中的两个至少共享一个对象的顶点之间绘制无向边。这个图模型$\mathbb{G}(n,\overrightarrow{a}, \overrightarrow{K_n},P_n)$在安全传感器网络和社交网络中有应用。我们研究了一般随机相交图$\mathbb{G}(n,\overrightarrow{a}, \overrightarrow{K_n},P_n)$的连通性,并给出了一个明显的0 - 1定律。并与Yagan建立的0 - 1定律进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信