Towards logarithmic GLSM : the r–spin case

Qile Chen, F. Janda, Y. Ruan, Adrien Sauvaget
{"title":"Towards logarithmic GLSM : the r–spin\ncase","authors":"Qile Chen, F. Janda, Y. Ruan, Adrien Sauvaget","doi":"10.2140/gt.2022.26.2855","DOIUrl":null,"url":null,"abstract":"In this article, we establish the logarithmic foundation for compactifying the moduli stacks of the gauged linear sigma model using stable log maps of Abramovich-Chen-Gross-Siebert. We then illustrate our method via the key example of Witten's $r$-spin class to construct a proper moduli stack with a reduced perfect obstruction theory whose virtual cycle recovers the $r$-spin virtual cycle of Chang-Li-Li. Indeed, our construction of the reduced virtual cycle is built upon the work of Chang-Li-Li by appropriately extending and modifying the Kiem-Li cosection along certain logarithmic boundary. In the subsequent article, we push the technique to a general situation. One motivation of our construction is to fit the gauged linear sigma model in the broader setting of Gromov-Witten theory so that powerful tools such as virtual localization can be applied. A project along this line is currently in progress leading to applications including computing loci of holomorphic differentials, and calculating higher genus Gromov-Witten invariants of quintic threefolds.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.2855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we establish the logarithmic foundation for compactifying the moduli stacks of the gauged linear sigma model using stable log maps of Abramovich-Chen-Gross-Siebert. We then illustrate our method via the key example of Witten's $r$-spin class to construct a proper moduli stack with a reduced perfect obstruction theory whose virtual cycle recovers the $r$-spin virtual cycle of Chang-Li-Li. Indeed, our construction of the reduced virtual cycle is built upon the work of Chang-Li-Li by appropriately extending and modifying the Kiem-Li cosection along certain logarithmic boundary. In the subsequent article, we push the technique to a general situation. One motivation of our construction is to fit the gauged linear sigma model in the broader setting of Gromov-Witten theory so that powerful tools such as virtual localization can be applied. A project along this line is currently in progress leading to applications including computing loci of holomorphic differentials, and calculating higher genus Gromov-Witten invariants of quintic threefolds.
走向对数GLSM: r -自旋格
在本文中,我们建立了利用稳定对数映射的Abramovich-Chen-Gross-Siebert紧化测量线性sigma模型的模栈的对数基础。然后,我们通过Witten的$r$-spin类的关键例子来说明我们的方法,用简化的完全阻碍理论构造了一个固有模堆栈,其虚循环恢复了Chang-Li-Li的$r$-spin虚循环。实际上,我们的简化虚循环的构造是建立在Chang-Li-Li的工作基础上,通过沿着一定的对数边界适当地扩展和修改Kiem-Li共分割。在随后的文章中,我们将把该技术推广到一般情况下。我们构建的一个动机是在更广泛的Gromov-Witten理论中拟合测量线性sigma模型,以便应用虚拟定位等强大工具。沿着这条路线的一个项目目前正在进行中,其应用包括计算全纯微分的轨迹,以及计算五次三倍的高属Gromov-Witten不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信