A novel FEM-based dynamic framework for subdivision surfaces

Chhandomay Mandal, Hong Qin, B. Vemuri
{"title":"A novel FEM-based dynamic framework for subdivision surfaces","authors":"Chhandomay Mandal, Hong Qin, B. Vemuri","doi":"10.1145/304012.304031","DOIUrl":null,"url":null,"abstract":"Subdivision surfaces have been extensively used to model smooth shapes of arbitrary topology. Recursive subdivision on an userdefined initial control mesh generates a visually pleasing smooth surface in the limit. However, users have to carefully specify the initial mesh and/or painstakingly manipulate the control vertices at different levels of subdivision hierarchy to satisfy various functional and aesthetic requirements in the limit surface. This modeling drawback results from the lack of direct manipulation tools for the limit surface. In this paper, we integrate physicsbased modeling techniques with geometric subdivision methodology and present an unified approach for arbitrary subdivision schemes. Our dynamic framework permits users to directly manipulate the limit subdivision surface via physics-based ”force” tools. The key contribution of this unified approach is to formulate the smooth limit surface of any subdivision scheme as a single type of novel finite elements. The geometric and dynamic features of our subdivision-based finite elements depend on the subdivision scheme involved. We present our finite element method (FEM) and formulation for the modified butterfly and Catmull-Clark subdivision schemes, and further generalize our dynamic framework for any subdivision scheme. Our FEM-based approach significantly advances the state-of-the-art of physics-based geometric modeling because (1) our dynamic framework provides a universal physicsbased solution to any subdivision scheme beyond frequently-used and popular spline-like subdivision techniques; (2) we systematically devise a natural mechanism that allows users to intuitively deform any subdivision surface; (3) we represent the smooth limit surface of any subdivision scheme using a single type of novel subdivision-based finite elements. Our experiments demonstrate that the new unified FEM-based framework promises a greater potential of subdivision techniques for solid modeling, finite element analysis, and engineering design.","PeriodicalId":286112,"journal":{"name":"International Conference on Smart Media and Applications","volume":"439 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Smart Media and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/304012.304031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

Subdivision surfaces have been extensively used to model smooth shapes of arbitrary topology. Recursive subdivision on an userdefined initial control mesh generates a visually pleasing smooth surface in the limit. However, users have to carefully specify the initial mesh and/or painstakingly manipulate the control vertices at different levels of subdivision hierarchy to satisfy various functional and aesthetic requirements in the limit surface. This modeling drawback results from the lack of direct manipulation tools for the limit surface. In this paper, we integrate physicsbased modeling techniques with geometric subdivision methodology and present an unified approach for arbitrary subdivision schemes. Our dynamic framework permits users to directly manipulate the limit subdivision surface via physics-based ”force” tools. The key contribution of this unified approach is to formulate the smooth limit surface of any subdivision scheme as a single type of novel finite elements. The geometric and dynamic features of our subdivision-based finite elements depend on the subdivision scheme involved. We present our finite element method (FEM) and formulation for the modified butterfly and Catmull-Clark subdivision schemes, and further generalize our dynamic framework for any subdivision scheme. Our FEM-based approach significantly advances the state-of-the-art of physics-based geometric modeling because (1) our dynamic framework provides a universal physicsbased solution to any subdivision scheme beyond frequently-used and popular spline-like subdivision techniques; (2) we systematically devise a natural mechanism that allows users to intuitively deform any subdivision surface; (3) we represent the smooth limit surface of any subdivision scheme using a single type of novel subdivision-based finite elements. Our experiments demonstrate that the new unified FEM-based framework promises a greater potential of subdivision techniques for solid modeling, finite element analysis, and engineering design.
一种新的基于有限元法的细分曲面动态框架
细分曲面被广泛用于模拟任意拓扑的光滑形状。在用户定义的初始控制网格上进行递归细分,在极限内生成视觉上令人愉悦的光滑表面。然而,用户必须仔细指定初始网格和/或在不同的细分层次上煞费苦心地操纵控制顶点,以满足极限曲面的各种功能和美学要求。这种建模缺陷是由于缺乏对极限曲面的直接操作工具造成的。在本文中,我们将基于物理的建模技术与几何细分方法相结合,提出了一种用于任意细分方案的统一方法。我们的动态框架允许用户通过基于物理的“力”工具直接操作极限细分表面。这种统一方法的关键贡献是将任何细分方案的光滑极限表面表述为单一类型的新型有限元。我们基于细分的有限元的几何和动态特征取决于所涉及的细分方案。本文给出了改进的蝶形和Catmull-Clark剖分方案的有限元方法和公式,并进一步推广了对任何剖分方案的动力学框架。我们基于fem的方法显著推进了基于物理的几何建模的最新技术,因为(1)我们的动态框架为任何细分方案提供了通用的基于物理的解决方案,而不是常用的和流行的样条细分技术;(2)我们系统地设计了一种自然机制,允许用户直观地变形任何细分表面;(3)我们用一种新型的基于细分的有限元来表示任意细分方案的光滑极限曲面。我们的实验表明,新的统一的基于有限元的框架为实体建模、有限元分析和工程设计的细分技术提供了更大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信