A multi-target tracking algorithm using texture for real-time surveillance

Zhixu Zhao, Shiqi Yu, Xinyu Wu, Congling Wang, Yangsheng Xu
{"title":"A multi-target tracking algorithm using texture for real-time surveillance","authors":"Zhixu Zhao, Shiqi Yu, Xinyu Wu, Congling Wang, Yangsheng Xu","doi":"10.1109/ROBIO.2009.4913335","DOIUrl":null,"url":null,"abstract":"In this paper, we present a texture-based multitarget tracking algorithm. Moving objects are described by local binary patterns (LBP), which is a kind of discriminative texture descriptor. The Kalman filter is introduced into the algorithm to predict the blob's new position and size. Blobs are searched in the neighborhood of the Kalman predictions. If more than one are found, the LBP distance, which has been evaluated valid for blob distinguishing in our experiments, is applied to locate the tracking target. Cooperates with the LBP distance, the Kalman filter is efficient in dealing with collisions. Tracking results demonstrate the effectiveness of the algorithm. This algorithm has been implemented on PC and DSP platforms and achieved real-time performance.","PeriodicalId":321332,"journal":{"name":"2008 IEEE International Conference on Robotics and Biomimetics","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Robotics and Biomimetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2009.4913335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, we present a texture-based multitarget tracking algorithm. Moving objects are described by local binary patterns (LBP), which is a kind of discriminative texture descriptor. The Kalman filter is introduced into the algorithm to predict the blob's new position and size. Blobs are searched in the neighborhood of the Kalman predictions. If more than one are found, the LBP distance, which has been evaluated valid for blob distinguishing in our experiments, is applied to locate the tracking target. Cooperates with the LBP distance, the Kalman filter is efficient in dealing with collisions. Tracking results demonstrate the effectiveness of the algorithm. This algorithm has been implemented on PC and DSP platforms and achieved real-time performance.
一种基于纹理的实时多目标跟踪算法
本文提出了一种基于纹理的多目标跟踪算法。局部二值模式(LBP)是一种判别纹理描述符。算法中引入了卡尔曼滤波来预测斑点的新位置和大小。在卡尔曼预测的邻域中搜索斑点。如果发现多个斑点,则应用实验中评估的有效斑点识别的LBP距离来定位跟踪目标。卡尔曼滤波与LBP距离相配合,可以有效地处理碰撞。跟踪结果验证了算法的有效性。该算法已在PC和DSP平台上实现,实现了实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信