Distribution Simulation Under Local Differential Privacy

S. Asoodeh
{"title":"Distribution Simulation Under Local Differential Privacy","authors":"S. Asoodeh","doi":"10.1109/cwit55308.2022.9817663","DOIUrl":null,"url":null,"abstract":"We investigate the problem of distribution simu-lation under local differential privacy: Alice and Bob observe sequences <tex>$X^{n}$</tex> and <tex>$Y^{n}$</tex> respectively, where <tex>$Y^{n}$</tex> is generated by a non-interactive <tex>$\\varepsilon$</tex> -Iocally differentially private (LDP) mechanism from <tex>$X^{n}$</tex>. The goal is for Alice and Bob to output <tex>$U$</tex> and <tex>$V$</tex> from a joint distribution that is close in total variation distance to a target distribution <tex>$P_{UV}$</tex>. As the main result, we show that such task is impossible if the hynercontractivity coefficient of <tex>$P_{UV}$</tex> is strictly bigger than <tex>$\\left(\\frac{e^{\\varepsilon}-1}{e^{\\varepsilon}+1}\\right)^{2}$</tex> . The proof of this result also leads to a new operational interpretation of LDP mechanisms: if <tex>$Y$</tex> is an output of an <tex>$\\varepsilon$</tex> -LDP mechanism with input <tex>$X$</tex>, then the probability of correctly guessing <tex>$f(X)$</tex> given <tex>$Y$</tex> is bigger than the probability of blind guessing only by <tex>$\\frac{e^{\\varepsilon}-1}{e^{\\varepsilon}+1}$</tex>, for any deterministic finitely-supported function <tex>$f$</tex> • If <tex>$f(X)$</tex> is continuous, then a similar result holds for the minimum mean-squared error in estimating <tex>$f(X)$</tex> given <tex>$Y$</tex>.","PeriodicalId":401562,"journal":{"name":"2022 17th Canadian Workshop on Information Theory (CWIT)","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Canadian Workshop on Information Theory (CWIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cwit55308.2022.9817663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the problem of distribution simu-lation under local differential privacy: Alice and Bob observe sequences $X^{n}$ and $Y^{n}$ respectively, where $Y^{n}$ is generated by a non-interactive $\varepsilon$ -Iocally differentially private (LDP) mechanism from $X^{n}$. The goal is for Alice and Bob to output $U$ and $V$ from a joint distribution that is close in total variation distance to a target distribution $P_{UV}$. As the main result, we show that such task is impossible if the hynercontractivity coefficient of $P_{UV}$ is strictly bigger than $\left(\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}\right)^{2}$ . The proof of this result also leads to a new operational interpretation of LDP mechanisms: if $Y$ is an output of an $\varepsilon$ -LDP mechanism with input $X$, then the probability of correctly guessing $f(X)$ given $Y$ is bigger than the probability of blind guessing only by $\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}$, for any deterministic finitely-supported function $f$ • If $f(X)$ is continuous, then a similar result holds for the minimum mean-squared error in estimating $f(X)$ given $Y$.
局部差分隐私下的分布仿真
我们研究了局部差分隐私下的分布模拟问题:Alice和Bob分别观察序列$X^{n}$和$Y^{n}$,其中$Y^{n}$是由$X^{n}$的非交互式$\varepsilon$ -局部差分私有(LDP)机制生成的。Alice和Bob的目标是从一个总变异距离接近目标分布$P_{UV}$的联合分布中输出$U$和$V$。作为主要结果,我们表明,如果$P_{UV}$的超收缩系数严格大于$\left(\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}\right)^{2}$,则此任务是不可能完成的。这一结果的证明也导致了对LDP机制的一种新的操作解释:如果$Y$是输入$X$的$\varepsilon$ -LDP机制的输出,那么对于任何确定性有限支持函数$f$, $Y$正确猜测$f(X)$的概率大于仅通过$\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}$盲猜的概率。•如果$f(X)$是连续的,则对于给定$Y$估计$f(X)$的最小均方误差有类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信