Limits and colimits

Jon P. May
{"title":"Limits and colimits","authors":"Jon P. May","doi":"10.1142/9789811236099_0003","DOIUrl":null,"url":null,"abstract":"Let D be a small category and let C be any category. A D-shaped diagram in C is a functor F : D −→ C . A morphism F −→ F ′ of D-shaped diagrams is a natural transformation, and we have the category D [C ] of D-shaped diagrams in C . Any object C of C determines the constant diagram C that sends each object of D to C and sends each morphism of D to the identity morphism of C. The colimit, colimF , of a D-shaped diagram F is an object of C together with a morphism of diagrams ι : F −→ colim F that is initial among all such morphisms. This means that if η : F −→ A is a morphism of diagrams, then there is a unique map η̃ : colim F −→ A in C such that η̃ ◦ ι = η. Diagrammatically, this property is expressed by the assertion that, for each map d : D −→ D in D , we have a commutative diagram","PeriodicalId":188337,"journal":{"name":"Category Theory and Applications","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Category Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811236099_0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let D be a small category and let C be any category. A D-shaped diagram in C is a functor F : D −→ C . A morphism F −→ F ′ of D-shaped diagrams is a natural transformation, and we have the category D [C ] of D-shaped diagrams in C . Any object C of C determines the constant diagram C that sends each object of D to C and sends each morphism of D to the identity morphism of C. The colimit, colimF , of a D-shaped diagram F is an object of C together with a morphism of diagrams ι : F −→ colim F that is initial among all such morphisms. This means that if η : F −→ A is a morphism of diagrams, then there is a unique map η̃ : colim F −→ A in C such that η̃ ◦ ι = η. Diagrammatically, this property is expressed by the assertion that, for each map d : D −→ D in D , we have a commutative diagram
极限和极限
设D是一个小范畴C是任意范畴。C中的D形图是一个函子F: D−→C。D形图的态射F−→F '是一个自然变换,在C中我们有D形图的范畴D [C]。C的任何对象C决定了常数图C,它将D的每一个对象发送给C,并将D的每一个态射发送给C的恒等态射。D形图F的极限colimF是C的一个对象和图的态射i: F−→colimF,它是所有这些态射中初始的。这意味着如果η: F−→A是图的态射,那么在C中存在一个唯一的映射η: colim F−→A,使得η→i = η。图解上,这个性质可以用断言来表示,对于d中的每个映射d: d−→d,我们有一个交换图
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信