Degree Formulas

C. Haesemeyer, C. Weibel
{"title":"Degree Formulas","authors":"C. Haesemeyer, C. Weibel","doi":"10.2307/j.ctv941tx2.13","DOIUrl":null,"url":null,"abstract":"This chapter uses algebraic cobordism to establish some degree formulas. It presents δ‎ as a function from a class of smooth projective varieties over a field 𝑘 to some abelian group. Here, a degree formula for δ‎ is a formula relating δ‎(𝑋), δ‎(𝑌), and deg(𝑓) for any generically finite map 𝑓 : 𝑌 → 𝑋 in this class. The formula is usually δ‎(𝑌)=deg(𝑓)δ‎(𝑋). These degree formulas are used to prove that any norm variety over 𝑘 is a ν‎\n n−1-variety. Using a standard result for the complex bordism ring 𝑀𝑈*, which uses a gluing argument of equivariant bordism theory, this chapter establishes Rost's DN (Degree and Norm Principle) Theorem for degrees, and defines the invariant η‎(𝑋/𝑆) of a pseudo-Galois cover.","PeriodicalId":145287,"journal":{"name":"The Norm Residue Theorem in Motivic Cohomology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Norm Residue Theorem in Motivic Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv941tx2.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter uses algebraic cobordism to establish some degree formulas. It presents δ‎ as a function from a class of smooth projective varieties over a field 𝑘 to some abelian group. Here, a degree formula for δ‎ is a formula relating δ‎(𝑋), δ‎(𝑌), and deg(𝑓) for any generically finite map 𝑓 : 𝑌 → 𝑋 in this class. The formula is usually δ‎(𝑌)=deg(𝑓)δ‎(𝑋). These degree formulas are used to prove that any norm variety over 𝑘 is a ν‎ n−1-variety. Using a standard result for the complex bordism ring 𝑀𝑈*, which uses a gluing argument of equivariant bordism theory, this chapter establishes Rost's DN (Degree and Norm Principle) Theorem for degrees, and defines the invariant η‎(𝑋/𝑆) of a pseudo-Galois cover.
度公式
本章利用代数协数法建立了若干次方程。它将δ δ表示为域𝑘上的一类光滑射影变量到某个阿贝尔群的函数。这里,δ δ的度数公式是有关δ δ(𝑋),δ δ(𝑌)和°(𝑓)的公式,适用于本课程中任何一般有限映射𝑓:𝑌→𝑋。通常公式为δ′(𝑌)=°(𝑓)δ′(𝑋)。这些度数公式用来证明𝑘上的任何范数变化都是ν _ n−1变化。本章利用等变bordism理论的胶合论证,利用复bordism环𝑀𝑈*的一个标准结果,建立了Rost的DN(度和范数原理)定理,并定义了伪伽罗瓦盖的不变量η(𝑋/𝑆)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信