Work In Progress: Safety and Robustness Verification of Autoencoder-Based Regression Models using the NNV Tool

Neelanjana Pal, Taylor T. Johnson
{"title":"Work In Progress: Safety and Robustness Verification of Autoencoder-Based Regression Models using the NNV Tool","authors":"Neelanjana Pal, Taylor T. Johnson","doi":"10.4204/EPTCS.361.8","DOIUrl":null,"url":null,"abstract":"This work in progress paper introduces robustness verification for autoencoder-based regression neural network (NN) models, following state-of-the-art approaches for robustness verification of image classification NNs. Despite the ongoing progress in developing verification methods for safety and robustness in various deep neural networks (DNNs), robustness checking of autoencoder models has not yet been considered. We explore this open space of research and check ways to bridge the gap between existing DNN verification methods by extending existing robustness analysis methods for such autoencoder networks. While classification models using autoencoders work more or less similar to image classification NNs, the functionality of regression models is distinctly different. We introduce two definitions of robustness evaluation metrics for autoencoder-based regression models, specifically the percentage robustness and un-robustness grade. We also modified the existing Imagestar approach, adjusting the variables to take care of the specific input types for regression networks. The approach is implemented as an extension of NNV, then applied and evaluated on a dataset, with a case study experiment shown using the same dataset. As per the authors' understanding, this work in progress paper is the first to show possible reachability analysis of autoencoder-based NNs.","PeriodicalId":313825,"journal":{"name":"International Workshop on Symbolic-Numeric methods for Reasoning about CPS and IoT","volume":"271 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Symbolic-Numeric methods for Reasoning about CPS and IoT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.361.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work in progress paper introduces robustness verification for autoencoder-based regression neural network (NN) models, following state-of-the-art approaches for robustness verification of image classification NNs. Despite the ongoing progress in developing verification methods for safety and robustness in various deep neural networks (DNNs), robustness checking of autoencoder models has not yet been considered. We explore this open space of research and check ways to bridge the gap between existing DNN verification methods by extending existing robustness analysis methods for such autoencoder networks. While classification models using autoencoders work more or less similar to image classification NNs, the functionality of regression models is distinctly different. We introduce two definitions of robustness evaluation metrics for autoencoder-based regression models, specifically the percentage robustness and un-robustness grade. We also modified the existing Imagestar approach, adjusting the variables to take care of the specific input types for regression networks. The approach is implemented as an extension of NNV, then applied and evaluated on a dataset, with a case study experiment shown using the same dataset. As per the authors' understanding, this work in progress paper is the first to show possible reachability analysis of autoencoder-based NNs.
正在进行的工作:使用NNV工具的基于自编码器的回归模型的安全性和鲁棒性验证
这篇正在进行的论文介绍了基于自编码器的回归神经网络(NN)模型的鲁棒性验证,采用了最先进的图像分类NN鲁棒性验证方法。尽管各种深度神经网络(dnn)的安全性和鲁棒性验证方法不断取得进展,但自编码器模型的鲁棒性检查尚未得到考虑。我们探索这个开放的研究空间,并检查如何通过扩展现有的自编码器网络的鲁棒性分析方法来弥合现有DNN验证方法之间的差距。虽然使用自编码器的分类模型或多或少与图像分类神经网络相似,但回归模型的功能明显不同。我们介绍了基于自编码器的回归模型的鲁棒性评价指标的两种定义,特别是鲁棒性百分比和非鲁棒性等级。我们还修改了现有的Imagestar方法,调整变量以照顾回归网络的特定输入类型。该方法作为NNV的扩展实现,然后在数据集上应用和评估,并使用相同的数据集进行了案例研究实验。根据作者的理解,这篇正在进行中的论文是第一篇展示基于自编码器的神经网络可能的可达性分析的论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信