E. Bothos, K. Christidis, Dimitris Apostolou, G. Mentzas
{"title":"Information market based recommender systems fusion","authors":"E. Bothos, K. Christidis, Dimitris Apostolou, G. Mentzas","doi":"10.1145/2039320.2039321","DOIUrl":null,"url":null,"abstract":"Recommender Systems have emerged as a way to tackle the overload of information reflected in the increasing volume of information artefacts in the web and elsewhere. Recommender Systems analyse existing information on the user activities in order to estimate future preferences. However, in real life situations, different types of information can be found and their interpretation can vary as well. Each recommender system implements a different approach for utilizing the known information and predicting the user preferences. A problem is that of blending the recommendations in an adaptive, intuitive way while performing better than base recommenders. In this work we propose an approach based on information markets for the fusion of recommender systems. Information Markets have unique characteristics that make them suitable building blocks for ensemble recommenders. We evaluate our approach with the Movielens and Netflix datasets and discuss the results of our experiments.","PeriodicalId":144030,"journal":{"name":"HetRec '11","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HetRec '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2039320.2039321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Recommender Systems have emerged as a way to tackle the overload of information reflected in the increasing volume of information artefacts in the web and elsewhere. Recommender Systems analyse existing information on the user activities in order to estimate future preferences. However, in real life situations, different types of information can be found and their interpretation can vary as well. Each recommender system implements a different approach for utilizing the known information and predicting the user preferences. A problem is that of blending the recommendations in an adaptive, intuitive way while performing better than base recommenders. In this work we propose an approach based on information markets for the fusion of recommender systems. Information Markets have unique characteristics that make them suitable building blocks for ensemble recommenders. We evaluate our approach with the Movielens and Netflix datasets and discuss the results of our experiments.