Hui Zhang, M. Boyles, Guangchen Ruan, Huian Li, Hongwei Shen, M. Ando
{"title":"XSEDE-enabled high-throughput lesion activity assessment","authors":"Hui Zhang, M. Boyles, Guangchen Ruan, Huian Li, Hongwei Shen, M. Ando","doi":"10.1145/2484762.2484783","DOIUrl":null,"url":null,"abstract":"Caries lesion activity assessment has been a routine diagnostic procedure in dental caries management, traditionally employing subjective measurements incorporating visual and tactile inspections. Recently, advances in 2D/3D image processing and analysis methods and microfocus x-ray computerized tomography (μ-CT) hardware, together with increased power of high performance computing, have created a synergic effect that is revolutionizing many fields in dental computing. In this paper, we report such an XSEDE-enabled high-throughput lesion activity assessment workflow that exploits 2D/3D image processing, visual analytics, and high performance computing technologies. Our paper starts with a brief introduction of the image dataset in our dental studies. We then proceed to a family of 2D image analysis, ROI segmentation, and 3D geometric construction methods. By combining dental imaging technology and 2D/3D image processing algorithms, we transform the task of lesion activity assessment into a 3D-time series analysis of computer generated lesion models. Building on the computational algorithms and implementation models, we develop a high-throughput dental computing workflow exploiting MapReduce tasks to parallelize the image analysis of dental CT scans, the segmentation of region-of-interest (ROI), and the 3D construction of lesion volumes. We showcase the employment of 3D-time series analysis and several other information representations that are applied to our lesion activity assessment scenario focusing on large scale dental image data.","PeriodicalId":426819,"journal":{"name":"Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2484762.2484783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Caries lesion activity assessment has been a routine diagnostic procedure in dental caries management, traditionally employing subjective measurements incorporating visual and tactile inspections. Recently, advances in 2D/3D image processing and analysis methods and microfocus x-ray computerized tomography (μ-CT) hardware, together with increased power of high performance computing, have created a synergic effect that is revolutionizing many fields in dental computing. In this paper, we report such an XSEDE-enabled high-throughput lesion activity assessment workflow that exploits 2D/3D image processing, visual analytics, and high performance computing technologies. Our paper starts with a brief introduction of the image dataset in our dental studies. We then proceed to a family of 2D image analysis, ROI segmentation, and 3D geometric construction methods. By combining dental imaging technology and 2D/3D image processing algorithms, we transform the task of lesion activity assessment into a 3D-time series analysis of computer generated lesion models. Building on the computational algorithms and implementation models, we develop a high-throughput dental computing workflow exploiting MapReduce tasks to parallelize the image analysis of dental CT scans, the segmentation of region-of-interest (ROI), and the 3D construction of lesion volumes. We showcase the employment of 3D-time series analysis and several other information representations that are applied to our lesion activity assessment scenario focusing on large scale dental image data.