{"title":"Adaptive shrinkage cascades for blind image deconvolution","authors":"Xuejian Rong, Yingli Tian","doi":"10.1109/ICDSP.2016.7868622","DOIUrl":null,"url":null,"abstract":"Recently emerged discriminative non-blind deconvolution methods achieve excellent performance with only a fraction of computation cost w.r.t. generative competitors, but their extension to blind deconvolution field was seldom addressed in a practical manner, albeit equally vital in image restoration area. We propose a novel framework for effective blind image deblurring by patch-wise prior based adaptive shrinkage cascades, which introduces the powerful internal patch-based image statistics to the non-blind shrinkage field formulations. The rich expressiveness of internal patch prior brings instance-specific adaptivity to alternating kernel refinement between neighboring shrinkage cascades, while shrinkage model trained from varieties of natural image collections benefits internal patch-wise prior inference with external information and superior efficiency.","PeriodicalId":206199,"journal":{"name":"2016 IEEE International Conference on Digital Signal Processing (DSP)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2016.7868622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Recently emerged discriminative non-blind deconvolution methods achieve excellent performance with only a fraction of computation cost w.r.t. generative competitors, but their extension to blind deconvolution field was seldom addressed in a practical manner, albeit equally vital in image restoration area. We propose a novel framework for effective blind image deblurring by patch-wise prior based adaptive shrinkage cascades, which introduces the powerful internal patch-based image statistics to the non-blind shrinkage field formulations. The rich expressiveness of internal patch prior brings instance-specific adaptivity to alternating kernel refinement between neighboring shrinkage cascades, while shrinkage model trained from varieties of natural image collections benefits internal patch-wise prior inference with external information and superior efficiency.