Diagnosis of the Abnormality Extracted MRI Slice Images of a GUI Based Intelligent Diagnostic Imaging System

Jose Alex Mathew, A. M. Khan, U. Niranjan, Senior Member
{"title":"Diagnosis of the Abnormality Extracted MRI Slice Images of a GUI Based Intelligent Diagnostic Imaging System","authors":"Jose Alex Mathew, A. M. Khan, U. Niranjan, Senior Member","doi":"10.1109/PACC.2011.5979011","DOIUrl":null,"url":null,"abstract":"Diagnosis is the Key feature of an Intelligent Diagnostic Imaging System (IDIS). This paper describes the major diagnosis depending on the shape, texture, and area of the abnormality. Abnormality extraction is the vital step in a series of processes aimed at overall image understanding. Region based segmentation is used for abnormality extraction. This paper also describes author defined algorithms for threshold detection for abnormality extraction, which gives excellent result compared to the threshold detection using Otsu's method. Different algorithms are used for T1 and T2 MRI Images. This paper does the comparison of different segmentation techniques. MATLAB tools are used to do the segmentation.","PeriodicalId":403612,"journal":{"name":"2011 International Conference on Process Automation, Control and Computing","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Process Automation, Control and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACC.2011.5979011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diagnosis is the Key feature of an Intelligent Diagnostic Imaging System (IDIS). This paper describes the major diagnosis depending on the shape, texture, and area of the abnormality. Abnormality extraction is the vital step in a series of processes aimed at overall image understanding. Region based segmentation is used for abnormality extraction. This paper also describes author defined algorithms for threshold detection for abnormality extraction, which gives excellent result compared to the threshold detection using Otsu's method. Different algorithms are used for T1 and T2 MRI Images. This paper does the comparison of different segmentation techniques. MATLAB tools are used to do the segmentation.
基于GUI的智能诊断成像系统异常提取MRI切片图像的诊断
诊断是智能诊断成像系统(IDIS)的关键特征。本文介绍了根据异常的形状、纹理和面积进行诊断的主要方法。异常提取是旨在全面理解图像的一系列过程中的关键步骤。异常提取采用基于区域的分割方法。本文还描述了作者定义的用于异常提取的阈值检测算法,与使用Otsu方法的阈值检测相比,该算法取得了较好的结果。T1和T2 MRI图像使用不同的算法。本文对不同的分割技术进行了比较。使用MATLAB工具进行分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信