Concurrent self-organizing maps for pattern classification

V. Neagoe, A. Ropot
{"title":"Concurrent self-organizing maps for pattern classification","authors":"V. Neagoe, A. Ropot","doi":"10.1109/COGINF.2002.1039311","DOIUrl":null,"url":null,"abstract":"We present a new neural classification model called concurrent self-organizing maps (CSOM), representing a winner-takes-all collection of small SOM networks. Each SOM of the system is trained individually to provide best results for one class only. We have considered two significant applications: face recognition and multispectral satellite image classification. For the first application, we have used the ORL database of 400 faces (40 classes). With CSOM (40 small linear SOMs), we have obtained a recognition score of 91%, while using a single big SOM one obtains a score of 83.5% only! For second application, we have classified the multispectral pixels belonging to a LANDSAT TM image with 7 bands into seven thematic categories. The experimental results lead to the recognition rate Of 95.29% using CSOM (7 circular SOMs), while with a single big SOM, one obtains a 94.31% recognition rate. Simultaneously, CSOM leads to a significant reduction of training time by comparison to SOM.","PeriodicalId":250129,"journal":{"name":"Proceedings First IEEE International Conference on Cognitive Informatics","volume":"434 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings First IEEE International Conference on Cognitive Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COGINF.2002.1039311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

Abstract

We present a new neural classification model called concurrent self-organizing maps (CSOM), representing a winner-takes-all collection of small SOM networks. Each SOM of the system is trained individually to provide best results for one class only. We have considered two significant applications: face recognition and multispectral satellite image classification. For the first application, we have used the ORL database of 400 faces (40 classes). With CSOM (40 small linear SOMs), we have obtained a recognition score of 91%, while using a single big SOM one obtains a score of 83.5% only! For second application, we have classified the multispectral pixels belonging to a LANDSAT TM image with 7 bands into seven thematic categories. The experimental results lead to the recognition rate Of 95.29% using CSOM (7 circular SOMs), while with a single big SOM, one obtains a 94.31% recognition rate. Simultaneously, CSOM leads to a significant reduction of training time by comparison to SOM.
用于模式分类的并发自组织映射
我们提出了一种新的神经分类模型,称为并发自组织映射(CSOM),它代表了一个小SOM网络的赢家通吃的集合。该系统的每个SOM都经过单独培训,仅为一个班级提供最佳结果。我们考虑了两个重要的应用:人脸识别和多光谱卫星图像分类。对于第一个应用程序,我们使用了包含400个人脸(40个类)的ORL数据库。使用CSOM(40个小线性SOM),我们获得了91%的识别分数,而使用单个大SOM的识别率仅为83.5% !对于第二个应用,我们将属于7个波段的LANDSAT TM图像的多光谱像元分为7个主题类别。实验结果表明,使用CSOM(7个圆形SOM)的识别率为95.29%,而使用单个大SOM的识别率为94.31%。同时,与SOM相比,CSOM显著减少了训练时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信