LightGBM: An Effective miRNA Classification Method in Breast Cancer Patients

Dehua Wang, Yang Zhang, Yi Zhao
{"title":"LightGBM: An Effective miRNA Classification Method in Breast Cancer Patients","authors":"Dehua Wang, Yang Zhang, Yi Zhao","doi":"10.1145/3155077.3155079","DOIUrl":null,"url":null,"abstract":"miRNAs are small noncoding RNA molecules, mainly responsible for post-transcriptional control of gene expressions. Machine learning is becoming more and more widely used in breast tumor classification and diagnosis. In this paper, we compared the performance of different machine learning methods, such as Random Forest (RF), eXtreme Gradient Boosting(XGBoost) and Light Gradient Boosting Machine(LightGBM), for miRNAs identification in breast cancer patients. The performance comparison of each algorithm was evaluated based on the accuracy and logistic loss and where LightGBM was found better performing in several aspects. hsa-mir-139 was found as an important target for the breast cancer classification. As a powerful tool, LightGBM can be used to identify and classify miRNA target in breast cancer.","PeriodicalId":237079,"journal":{"name":"Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"100","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3155077.3155079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 100

Abstract

miRNAs are small noncoding RNA molecules, mainly responsible for post-transcriptional control of gene expressions. Machine learning is becoming more and more widely used in breast tumor classification and diagnosis. In this paper, we compared the performance of different machine learning methods, such as Random Forest (RF), eXtreme Gradient Boosting(XGBoost) and Light Gradient Boosting Machine(LightGBM), for miRNAs identification in breast cancer patients. The performance comparison of each algorithm was evaluated based on the accuracy and logistic loss and where LightGBM was found better performing in several aspects. hsa-mir-139 was found as an important target for the breast cancer classification. As a powerful tool, LightGBM can be used to identify and classify miRNA target in breast cancer.
LightGBM:一种有效的乳腺癌患者miRNA分类方法
mirna是一种小的非编码RNA分子,主要负责基因表达的转录后控制。机器学习在乳腺肿瘤分类和诊断中的应用越来越广泛。在本文中,我们比较了随机森林(RF)、极端梯度增强(XGBoost)和光梯度增强机(LightGBM)等不同机器学习方法在乳腺癌患者mirna识别中的性能。基于准确性和逻辑损失以及LightGBM在几个方面表现更好的地方,评估了每种算法的性能比较。发现Hsa-mir-139是乳腺癌分类的重要靶点。作为一种强有力的工具,LightGBM可用于乳腺癌中miRNA靶点的识别和分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信