SAR Image Classification Using Non-Parametric Estimators of Shannon Entropy

Julia Cassetti, Daiana Delgadino, Andrea A. Rey, A. Frery
{"title":"SAR Image Classification Using Non-Parametric Estimators of Shannon Entropy","authors":"Julia Cassetti, Daiana Delgadino, Andrea A. Rey, A. Frery","doi":"10.23919/CISS51089.2021.9652326","DOIUrl":null,"url":null,"abstract":"Remote sensing with Synthetic Aperture Radar (SAR) data has become a vital tool for environmental studies. But they suffer the presence of speckle noise which hinders the analysis and interpretation of this kind of images. It has been shown that the ${\\mathcal{G}^0}$ family of distributions is a suitable model for SAR intensity because it possesses the ability to characterize areas with different degrees of texture. Information theory has gained a place in signal and image processing for parameter estimation and feature extraction. In this paper we evaluate the performance of different parametric and non-parametric Shannon entropy estimators in the single look cases, as attribute in the algorithm used for classification SAR images. These estimators were analyzed through Kappa and accuracy indexes. Finally, we apply these estimators to actual data.","PeriodicalId":318218,"journal":{"name":"2021 2nd China International SAR Symposium (CISS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd China International SAR Symposium (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CISS51089.2021.9652326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Remote sensing with Synthetic Aperture Radar (SAR) data has become a vital tool for environmental studies. But they suffer the presence of speckle noise which hinders the analysis and interpretation of this kind of images. It has been shown that the ${\mathcal{G}^0}$ family of distributions is a suitable model for SAR intensity because it possesses the ability to characterize areas with different degrees of texture. Information theory has gained a place in signal and image processing for parameter estimation and feature extraction. In this paper we evaluate the performance of different parametric and non-parametric Shannon entropy estimators in the single look cases, as attribute in the algorithm used for classification SAR images. These estimators were analyzed through Kappa and accuracy indexes. Finally, we apply these estimators to actual data.
基于Shannon熵非参数估计的SAR图像分类
利用合成孔径雷达(SAR)数据进行遥感已成为环境研究的重要工具。但是它们受到斑点噪声的影响,这阻碍了对这类图像的分析和解释。研究表明,${\mathcal{G}^0}$分布族是一个适合的SAR强度模型,因为它具有表征具有不同程度纹理的区域的能力。信息理论在信号和图像处理中的参数估计和特征提取中占有一席之地。在本文中,我们评估了不同参数和非参数香农熵估计器在单一情况下的性能,作为SAR图像分类算法的属性。通过Kappa和精度指标对这些估计量进行了分析。最后,我们将这些估计量应用于实际数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信