A Deep Learning Approach for Ventricular Arrhythmias Classification using Microcontroller

Ya-sine Agrignan, Shangli Zhou, Jun Bai, Sahidul Islam, S. Nabavi, Mimi Xie, Caiwen Ding
{"title":"A Deep Learning Approach for Ventricular Arrhythmias Classification using Microcontroller","authors":"Ya-sine Agrignan, Shangli Zhou, Jun Bai, Sahidul Islam, S. Nabavi, Mimi Xie, Caiwen Ding","doi":"10.1109/ISQED57927.2023.10129313","DOIUrl":null,"url":null,"abstract":"Intra-Cardiac Electrogram (IEGM) is widely used to identify life-threatening ventricular arrhythmias in medical devices to prevent sudden cardiac death, e.g., Implantable Cardioverter Defibrillator (ICD). In this paper, we present and explore the development of a machine learning approach for the detection of life-threatening Heart Arrhythmias through IEGM Data from an ICD Device. This work is facilitated by the design and analysis of 2 Convolutional Neural Network (CNN), 1D and 2D CNNs, that perform inference on a Low Power STM Nucleo-32 MCU. Multiple microcontroller software platforms are utilized to construct and deploy the trained models onto the MCU platform for inference measurements. The experimental analysis consists of minimizing Average Inference time and onboard Memory Occupation while maximizing the accuracy of the models. We profile the memory occupation and inference time for different CNN kernels. We develop a 1D CNN structure with a 26.20 ms Average Inference out of 10 measurements taken by the MCU platform. Model Weights in Flash Memory Occupied 5.99 KiB and Model Activations in SRAM (Static Random Access Memory) measure 5.00 KiB. The 1D CNN achieves a Fβ score of 97.8. The 2D CNN Model achieves 11.00 ms of inference, 3.05 KiB of Flash, and 8.09 KiB of SRAM. The 2D CNN achieves a Fβ score of 95.15. Our code is publicly available at https://github.com/Zhoushanglin100/TinyML-HuskyCSDeepical.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 24th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED57927.2023.10129313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intra-Cardiac Electrogram (IEGM) is widely used to identify life-threatening ventricular arrhythmias in medical devices to prevent sudden cardiac death, e.g., Implantable Cardioverter Defibrillator (ICD). In this paper, we present and explore the development of a machine learning approach for the detection of life-threatening Heart Arrhythmias through IEGM Data from an ICD Device. This work is facilitated by the design and analysis of 2 Convolutional Neural Network (CNN), 1D and 2D CNNs, that perform inference on a Low Power STM Nucleo-32 MCU. Multiple microcontroller software platforms are utilized to construct and deploy the trained models onto the MCU platform for inference measurements. The experimental analysis consists of minimizing Average Inference time and onboard Memory Occupation while maximizing the accuracy of the models. We profile the memory occupation and inference time for different CNN kernels. We develop a 1D CNN structure with a 26.20 ms Average Inference out of 10 measurements taken by the MCU platform. Model Weights in Flash Memory Occupied 5.99 KiB and Model Activations in SRAM (Static Random Access Memory) measure 5.00 KiB. The 1D CNN achieves a Fβ score of 97.8. The 2D CNN Model achieves 11.00 ms of inference, 3.05 KiB of Flash, and 8.09 KiB of SRAM. The 2D CNN achieves a Fβ score of 95.15. Our code is publicly available at https://github.com/Zhoushanglin100/TinyML-HuskyCSDeepical.
基于单片机的室性心律失常分类的深度学习方法
在植入式心律转复除颤器(ICD)等医疗器械中,心内电图(IEGM)被广泛用于识别危及生命的室性心律失常,以防止心源性猝死。在本文中,我们提出并探索了一种机器学习方法的发展,该方法通过来自ICD设备的IEGM数据来检测危及生命的心律失常。这项工作是通过设计和分析2卷积神经网络(CNN), 1D和2D CNN,在低功耗STM Nucleo-32 MCU上进行推理而促进的。利用多个微控制器软件平台构建训练好的模型并将其部署到MCU平台上进行推理测量。实验分析包括最小化平均推理时间和板载内存占用,同时最大限度地提高模型的准确性。我们分析了不同CNN核的内存占用和推理时间。我们开发了一个一维CNN结构,在MCU平台进行的10次测量中,平均推理时间为26.20 ms。Flash中占用的模型权重为5.99 KiB, SRAM(静态随机存取存储器)中的模型激活量为5.00 KiB。1D CNN的Fβ得分为97.8。2D CNN模型的推理时间为11.00 ms, Flash占用3.05 KiB, SRAM占用8.09 KiB。2D CNN的Fβ得分为95.15。我们的代码可以在https://github.com/Zhoushanglin100/TinyML-HuskyCSDeepical上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信