High-Throughput GPU Random Walk with Fine-Tuned Concurrent Query Processing

Cheng Xu, Chao Li, Pengyu Wang, Xiaofeng Hou, Jing Wang, Shixuan Sun, Minyi Guo, Hanqing Wu, Dongbai Chen, Xiang-Yi Liu
{"title":"High-Throughput GPU Random Walk with Fine-Tuned Concurrent Query Processing","authors":"Cheng Xu, Chao Li, Pengyu Wang, Xiaofeng Hou, Jing Wang, Shixuan Sun, Minyi Guo, Hanqing Wu, Dongbai Chen, Xiang-Yi Liu","doi":"10.1145/3572848.3577482","DOIUrl":null,"url":null,"abstract":"Random walk serves as a powerful tool in dealing with large-scale graphs, reducing data size while preserving structural information. Unfortunately, existing system frameworks all focus on the execution of a single walker task in serial. We propose CoWalker, a high-throughput GPU random walk framework tailored for concurrent random walk tasks. It introduces a multi-level concurrent execution model to allow concurrent random walk tasks to efficiently share GPU resources with low overhead. Our system prototype confirms that the proposed system could outperform (up to 54%) the state-of-the-art in a wide spectral of scenarios.","PeriodicalId":233744,"journal":{"name":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572848.3577482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Random walk serves as a powerful tool in dealing with large-scale graphs, reducing data size while preserving structural information. Unfortunately, existing system frameworks all focus on the execution of a single walker task in serial. We propose CoWalker, a high-throughput GPU random walk framework tailored for concurrent random walk tasks. It introduces a multi-level concurrent execution model to allow concurrent random walk tasks to efficiently share GPU resources with low overhead. Our system prototype confirms that the proposed system could outperform (up to 54%) the state-of-the-art in a wide spectral of scenarios.
高吞吐量GPU随机漫步与微调并发查询处理
随机漫步是处理大规模图的有力工具,在保留结构信息的同时减少了数据大小。不幸的是,现有的系统框架都专注于串行执行单个walker任务。我们提出了CoWalker,一个为并发随机漫步任务量身定制的高吞吐量GPU随机漫步框架。它引入了多级并发执行模型,允许并发随机漫步任务以低开销有效地共享GPU资源。我们的系统原型证实,在广泛的场景中,所提出的系统可以超越最先进的技术(高达54%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信