Neural approaches for parameter extraction of microwave transistor noise models

Z. Marinković, N. Ivkovic, O. Pronić-Rančić, V. Markovic, A. Caddemi
{"title":"Neural approaches for parameter extraction of microwave transistor noise models","authors":"Z. Marinković, N. Ivkovic, O. Pronić-Rančić, V. Markovic, A. Caddemi","doi":"10.1109/NEUREL.2012.6419956","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to analyze and compare two artificial neural network based approaches for parameter extractions of microwave transistor equivalent circuits including noise. In the first approach equivalent circuit parameters are determined from the operating conditions, whereas in the second approach equivalent circuit parameters are determined directly from the measured scattering and noise parameters. In both approaches, multilayer perceptron artificial neural networks are applied. The considered extraction approaches are analyzed on an example of temperature dependent modeling of a pHEMT transistor.","PeriodicalId":343718,"journal":{"name":"11th Symposium on Neural Network Applications in Electrical Engineering","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2012.6419956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this paper is to analyze and compare two artificial neural network based approaches for parameter extractions of microwave transistor equivalent circuits including noise. In the first approach equivalent circuit parameters are determined from the operating conditions, whereas in the second approach equivalent circuit parameters are determined directly from the measured scattering and noise parameters. In both approaches, multilayer perceptron artificial neural networks are applied. The considered extraction approaches are analyzed on an example of temperature dependent modeling of a pHEMT transistor.
微波晶体管噪声模型参数提取的神经网络方法
本文的目的是分析和比较两种基于人工神经网络的微波晶体管等效电路参数提取方法。在第一种方法中,等效电路参数由工作条件确定,而在第二种方法中,等效电路参数直接由测量的散射和噪声参数确定。这两种方法都采用了多层感知器人工神经网络。以pHEMT晶体管的温度相关建模为例,对所考虑的提取方法进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信