Christina L. Peterson, Amalee Wilson, P. Pirkelbauer, D. Dechev
{"title":"Optimized Transactional Data Structure Approach to Concurrency Control for In-Memory Databases","authors":"Christina L. Peterson, Amalee Wilson, P. Pirkelbauer, D. Dechev","doi":"10.1109/SBAC-PAD49847.2020.00025","DOIUrl":null,"url":null,"abstract":"The optimistic concurrency control (OCC) utilized by in-memory databases performs writes on thread-local copies and makes the writes visible upon passing validation. However, high contention workloads suffer from failure of the validation step due to non-semantic memory access conflicts, leading to frequent transaction aborts. In this work, we improve the commit rate of in-memory databases by replacing OCC and the underlying indexing of key-value entries in the Silo database with a lock-free transactional dictionary. To further optimize the transactional commit rate, we present transactional merging, a technique that relaxes the semantic conflict resolution of transactional data structures by merging conflicting operations to reduce aborts. Transactional merging guarantees strict serializability through a strategy that recovers the correct abstract state given that a transaction attempting to merge operations aborts. The experimental evaluation demonstrates that the lock-free transactional dictionary with transactional merging achieves an average speedup of 175% over OCC and the Masstree indexing used in the Silo database for write-dominated workloads on a non-uniform memory access system.","PeriodicalId":202581,"journal":{"name":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD49847.2020.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The optimistic concurrency control (OCC) utilized by in-memory databases performs writes on thread-local copies and makes the writes visible upon passing validation. However, high contention workloads suffer from failure of the validation step due to non-semantic memory access conflicts, leading to frequent transaction aborts. In this work, we improve the commit rate of in-memory databases by replacing OCC and the underlying indexing of key-value entries in the Silo database with a lock-free transactional dictionary. To further optimize the transactional commit rate, we present transactional merging, a technique that relaxes the semantic conflict resolution of transactional data structures by merging conflicting operations to reduce aborts. Transactional merging guarantees strict serializability through a strategy that recovers the correct abstract state given that a transaction attempting to merge operations aborts. The experimental evaluation demonstrates that the lock-free transactional dictionary with transactional merging achieves an average speedup of 175% over OCC and the Masstree indexing used in the Silo database for write-dominated workloads on a non-uniform memory access system.