M. Caruso, A. Tommaso, F. Marignetti, R. Miceli, G. R. Galluzzo
{"title":"A general procedure for the construction of Gorges polygons for multi-phase windings of electrical machines","authors":"M. Caruso, A. Tommaso, F. Marignetti, R. Miceli, G. R. Galluzzo","doi":"10.1109/EVER.2018.8362348","DOIUrl":null,"url":null,"abstract":"This paper presents a simple and effective procedure for the determination of the Gorges polygon, suitable for all possible winding configurations in electrical machines. This methodology takes into account the determination of a Winding Distribution Table (WDT), in which all the information about the distribution of the currents along the stator periphery is computed and from which the Görges polygon are easily derived. The proposed method can be applied to both symmetrical and asymmetrical multi-phase windings, including concentrated, fractional, reduced and dead-coil ones. The examples provided in this paper demonstrate the versatility of the proposed method.","PeriodicalId":344175,"journal":{"name":"2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVER.2018.8362348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper presents a simple and effective procedure for the determination of the Gorges polygon, suitable for all possible winding configurations in electrical machines. This methodology takes into account the determination of a Winding Distribution Table (WDT), in which all the information about the distribution of the currents along the stator periphery is computed and from which the Görges polygon are easily derived. The proposed method can be applied to both symmetrical and asymmetrical multi-phase windings, including concentrated, fractional, reduced and dead-coil ones. The examples provided in this paper demonstrate the versatility of the proposed method.