T. Matiash, M. Romashchenko, Vsevolod Bohaienko, S. Shevchuk, A. V. Kruchenyuk, Y. Butenko
{"title":"Monitoring and irrigation regime formation when growing crops using the \"Irrigation Online\" system","authors":"T. Matiash, M. Romashchenko, Vsevolod Bohaienko, S. Shevchuk, A. V. Kruchenyuk, Y. Butenko","doi":"10.31073/mivg202201-321","DOIUrl":null,"url":null,"abstract":"The paper analyzes the results of the implementation of an information and analytical irrigation management system “Irrigation Online” that enables to quickly generate and provide the users with the information about the current and projected state of soil moisture. A set of soil survey works was performed including the analysis of available information on soil reclamation conditions and irrigated land use; visual soil survey with the identification of points for detailed soil survey; soil sampling and laboratory studies on particle size distribution, hydrophysical soil properties and formation of input data for irrigation management. The configured system of instrumental monitoring observations on moisture supply, current meteorological parameters, and actual irrigation terms and rates allows predicting more accurately irrigation terms and rates in the reference fields as well as making their daily correction. The method of point information dissemination on irrigation arrays using remote sensing data was developed. In the course of research satellite image data and plant reflectivity by the NDVI and NDWI indices along with their variability and spatial heterogeneity using the ArcGIS geoinformation system were analyzed. The use of remote sensing data expands the capabilities of the system in terms of data dissemination on the timing and irrigation rates in the fields, which are out of monitoring observations. The results of the use of the operational irrigation management system in production conditions are given. The achieved results were demonstrated while cultivating corn for grain and sunflower. It was proved that by applying the system “Irrigation Online\" and keeping moisture supply in the optimal range the highest possible crop yield can be achieved in production conditions.","PeriodicalId":298682,"journal":{"name":"Міжвідомчий тематичний науковий збірник \"Меліорація і водне господарство\"","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Міжвідомчий тематичний науковий збірник \"Меліорація і водне господарство\"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31073/mivg202201-321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The paper analyzes the results of the implementation of an information and analytical irrigation management system “Irrigation Online” that enables to quickly generate and provide the users with the information about the current and projected state of soil moisture. A set of soil survey works was performed including the analysis of available information on soil reclamation conditions and irrigated land use; visual soil survey with the identification of points for detailed soil survey; soil sampling and laboratory studies on particle size distribution, hydrophysical soil properties and formation of input data for irrigation management. The configured system of instrumental monitoring observations on moisture supply, current meteorological parameters, and actual irrigation terms and rates allows predicting more accurately irrigation terms and rates in the reference fields as well as making their daily correction. The method of point information dissemination on irrigation arrays using remote sensing data was developed. In the course of research satellite image data and plant reflectivity by the NDVI and NDWI indices along with their variability and spatial heterogeneity using the ArcGIS geoinformation system were analyzed. The use of remote sensing data expands the capabilities of the system in terms of data dissemination on the timing and irrigation rates in the fields, which are out of monitoring observations. The results of the use of the operational irrigation management system in production conditions are given. The achieved results were demonstrated while cultivating corn for grain and sunflower. It was proved that by applying the system “Irrigation Online" and keeping moisture supply in the optimal range the highest possible crop yield can be achieved in production conditions.