Coefficient estimates for certain class of bi-univalent functions associated with κ-Fibonacci numbers

M. Shrigan
{"title":"Coefficient estimates for certain class of bi-univalent functions associated with κ-Fibonacci numbers","authors":"M. Shrigan","doi":"10.56947/gjom.v14i1.1096","DOIUrl":null,"url":null,"abstract":"In the present work, we propose to introduce and investigate a new class SLΣq,μ (γ, λ, n, pκ) of the function class Σ of bi-univalent functions related to κ-Fibonacci numbers defined in the open unit disk, which is associated with the Salagean type q-difference operator and satisfy some subordination conditions. We obtain coefficient bounds for the Taylor–Maclaurin coefficients |a2| and |a3| of the functions in the new class. Furthermore, we solve the Fekete–Szegö functional for functions in the class SLΣq,μ (γ, λ, n, pκ).","PeriodicalId":421614,"journal":{"name":"Gulf Journal of Mathematics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gulf Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56947/gjom.v14i1.1096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the present work, we propose to introduce and investigate a new class SLΣq,μ (γ, λ, n, pκ) of the function class Σ of bi-univalent functions related to κ-Fibonacci numbers defined in the open unit disk, which is associated with the Salagean type q-difference operator and satisfy some subordination conditions. We obtain coefficient bounds for the Taylor–Maclaurin coefficients |a2| and |a3| of the functions in the new class. Furthermore, we solve the Fekete–Szegö functional for functions in the class SLΣq,μ (γ, λ, n, pκ).
一类与κ-斐波那契数相关的双单价函数的系数估计
在本工作中,我们提出并研究了与开放单位圆盘上定义的κ-Fibonacci数相关的双单价函数类Σ的一个新的类SLΣq,μ (γ, λ, n, pκ),它与Salagean型q-差分算子相关联,并且满足一些从属条件。我们得到了新类函数的泰勒-麦克劳林系数|a2|和|a3|的系数界。此外,我们求解了SLΣq,μ (γ, λ, n, pκ)类函数的Fekete-Szegö泛函。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信