HOCT: A Highly Scalable Algorithm for Training Linear CRF on Modern Hardware

Tianyuan Chen, Lei Chang, Jianqing Ma, Wei Zhang, Feng Gao
{"title":"HOCT: A Highly Scalable Algorithm for Training Linear CRF on Modern Hardware","authors":"Tianyuan Chen, Lei Chang, Jianqing Ma, Wei Zhang, Feng Gao","doi":"10.1109/ICDMW.2009.69","DOIUrl":null,"url":null,"abstract":"This paper proposes an efficient algorithm, HOCT, for CRF training on modern computer architectures. First, software prefetching techniques are utilized to hide cache miss latency. Second, we exploit SIMD to process data in parallel. Third, when dealing with large data sets, we let HOCT instead of operating system to manage swapping operations. Our experiments on various real data sets show that HOCT yields a fourfold speedup when the data can fit in memory, and over a 30-fold speedup when the memory requirement exceeds the physical memory.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"188 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an efficient algorithm, HOCT, for CRF training on modern computer architectures. First, software prefetching techniques are utilized to hide cache miss latency. Second, we exploit SIMD to process data in parallel. Third, when dealing with large data sets, we let HOCT instead of operating system to manage swapping operations. Our experiments on various real data sets show that HOCT yields a fourfold speedup when the data can fit in memory, and over a 30-fold speedup when the memory requirement exceeds the physical memory.
HOCT:一种在现代硬件上训练线性CRF的高度可扩展算法
本文提出了一种用于现代计算机体系结构上的CRF训练的高效算法HOCT。首先,利用软件预取技术来隐藏缓存缺失延迟。其次,我们利用SIMD并行处理数据。第三,在处理大型数据集时,我们让HOCT代替操作系统来管理交换操作。我们在各种真实数据集上的实验表明,当数据可以装入内存时,HOCT的速度提高了4倍,当内存需求超过物理内存时,速度提高了30倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信