fAST refresh using mass query optimization

Wolfgang Lehner, R. Cochrane, H. Pirahesh, Markos Zaharioudakis
{"title":"fAST refresh using mass query optimization","authors":"Wolfgang Lehner, R. Cochrane, H. Pirahesh, Markos Zaharioudakis","doi":"10.1109/ICDE.2001.914852","DOIUrl":null,"url":null,"abstract":"Automatic summary tables (ASTs), more commonly known as materialized views, are widely used to enhance query performance, particularly for aggregate queries. Such queries access a huge number of rows to retrieve aggregated summary data while performing multiple joins in the context of a typical data warehouse star schema. To keep ASTs consistent with their underlying base data, the ASTs are either immediately synchronized or fully recomputed. This paper proposes an optimization strategy for simultaneously refreshing multiple ASTs, thus avoiding multiple scans of a large fact table (one pass for AST computation). A query stacking strategy detects common sub-expressions using the available query matching technology of DB2. Since exact common sub-expressions are rare, the novel query sharing approach systematically generates common subexpressions for a given set of \"related\" queries, considering different predicates, grouping expressions, and sets of base tables. The theoretical framework, a prototype implementation of both strategies in the IBM DB2 UDB/UWO database system, and performance evaluations based on the TPC/R data schema are presented in this paper.","PeriodicalId":431818,"journal":{"name":"Proceedings 17th International Conference on Data Engineering","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2001.914852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Automatic summary tables (ASTs), more commonly known as materialized views, are widely used to enhance query performance, particularly for aggregate queries. Such queries access a huge number of rows to retrieve aggregated summary data while performing multiple joins in the context of a typical data warehouse star schema. To keep ASTs consistent with their underlying base data, the ASTs are either immediately synchronized or fully recomputed. This paper proposes an optimization strategy for simultaneously refreshing multiple ASTs, thus avoiding multiple scans of a large fact table (one pass for AST computation). A query stacking strategy detects common sub-expressions using the available query matching technology of DB2. Since exact common sub-expressions are rare, the novel query sharing approach systematically generates common subexpressions for a given set of "related" queries, considering different predicates, grouping expressions, and sets of base tables. The theoretical framework, a prototype implementation of both strategies in the IBM DB2 UDB/UWO database system, and performance evaluations based on the TPC/R data schema are presented in this paper.
快速刷新使用大量查询优化
自动汇总表(ast),通常称为物化视图,广泛用于增强查询性能,特别是对于聚合查询。在典型的数据仓库星型模式上下文中执行多个连接时,此类查询访问大量行以检索聚合的摘要数据。为了使ast与其基础数据保持一致,ast要么立即同步,要么完全重新计算。本文提出了一种同时刷新多个AST的优化策略,从而避免了对大型事实表的多次扫描(一次扫描AST计算)。查询堆叠策略使用DB2的可用查询匹配技术检测公共子表达式。由于精确的公共子表达式很少,因此新的查询共享方法系统地为给定的一组“相关”查询生成公共子表达式,同时考虑不同的谓词、分组表达式和基表集。本文给出了理论框架、两种策略在IBM DB2 UDB/UWO数据库系统中的原型实现,以及基于TPC/R数据模式的性能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信