Remaining Useful Life Prediction Method for MOSFET Based on Time Series Model

Junkang Ni, C. Zhang, Xiaobin Zhang, T. Lei
{"title":"Remaining Useful Life Prediction Method for MOSFET Based on Time Series Model","authors":"Junkang Ni, C. Zhang, Xiaobin Zhang, T. Lei","doi":"10.1109/IPEC51340.2021.9421316","DOIUrl":null,"url":null,"abstract":"This paper presents a remaining useful life prediction method for MOSFET based on time series model. First, the degradation data of MOSFET is acquired from mathematical model. Next, correlation test is conducted to determine difference order of time-series model and Akaike information criterion (AIC) is used to determine the order of autocorrelation model and moving average model, thereby determining the parameters of time series model. Then, short-term cycle prediction is added to improve prediction accuracy and reduce accumulated error. Finally, the effectiveness of the developed life prediction model is verified using Matlab/Simulink.","PeriodicalId":340882,"journal":{"name":"2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC)","volume":"426 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPEC51340.2021.9421316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a remaining useful life prediction method for MOSFET based on time series model. First, the degradation data of MOSFET is acquired from mathematical model. Next, correlation test is conducted to determine difference order of time-series model and Akaike information criterion (AIC) is used to determine the order of autocorrelation model and moving average model, thereby determining the parameters of time series model. Then, short-term cycle prediction is added to improve prediction accuracy and reduce accumulated error. Finally, the effectiveness of the developed life prediction model is verified using Matlab/Simulink.
基于时间序列模型的MOSFET剩余使用寿命预测方法
提出了一种基于时间序列模型的MOSFET剩余使用寿命预测方法。首先,从数学模型中获取MOSFET的退化数据。接下来,通过相关检验确定时间序列模型的差分阶数,利用Akaike信息准则(AIC)确定自相关模型和移动平均模型的阶数,从而确定时间序列模型的参数。然后加入短期周期预测,提高预测精度,减少累积误差。最后,利用Matlab/Simulink验证了所建立的寿命预测模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信