Distributed Gauss-Newton method for node loclaization in wireless sensor networks

B. Cheng, R. E. Hudson, F. Lorenzelli, L. Vandenberghe, Kung Yao
{"title":"Distributed Gauss-Newton method for node loclaization in wireless sensor networks","authors":"B. Cheng, R. E. Hudson, F. Lorenzelli, L. Vandenberghe, Kung Yao","doi":"10.1109/SPAWC.2005.1506273","DOIUrl":null,"url":null,"abstract":"We present distributed algorithms for sensor localization based on the Gauss-Newton method. Each sensor updates its estimated location by computing the Gauss-Newton step for a local cost function and choosing a proper step length. Then it transmits the updated estimate to all the neighboring sensors. The proposed algorithms provide non-increasing values of a global cost function. It is shown in the paper that the algorithms have computational complexity of O(n) per iteration and a reduced communication cost over centralized algorithms.","PeriodicalId":105190,"journal":{"name":"International Workshop on Signal Processing Advances in Wireless Communications","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Signal Processing Advances in Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2005.1506273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present distributed algorithms for sensor localization based on the Gauss-Newton method. Each sensor updates its estimated location by computing the Gauss-Newton step for a local cost function and choosing a proper step length. Then it transmits the updated estimate to all the neighboring sensors. The proposed algorithms provide non-increasing values of a global cost function. It is shown in the paper that the algorithms have computational complexity of O(n) per iteration and a reduced communication cost over centralized algorithms.
无线传感器网络节点定位的分布式高斯-牛顿方法
提出了基于高斯-牛顿方法的分布式传感器定位算法。每个传感器通过计算局部代价函数的高斯-牛顿步长并选择适当的步长来更新其估计位置。然后将更新后的估计值发送给所有邻近的传感器。所提出的算法提供了一个全局代价函数的非递增值。本文表明,该算法每次迭代的计算复杂度为0 (n),并且与集中式算法相比,通信成本降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信