Double-Selection based High-Dimensional Factor Model with Application in Asset Pricing

Qingliang Fan, Fannu Hu, Xiao-Ping Zhang
{"title":"Double-Selection based High-Dimensional Factor Model with Application in Asset Pricing","authors":"Qingliang Fan, Fannu Hu, Xiao-Ping Zhang","doi":"10.1109/GlobalSIP45357.2019.8969175","DOIUrl":null,"url":null,"abstract":"This paper proposes a principal component analysis (PCA) approach after a double-selection Lasso and applies it to both Chinese and US stock market data. Similar to the idea of Post-Lasso, we perform least squares regression on the principal component factors. To accommodate the nonlinear nature of the data, this paper compares the support vector regression (SVR) model with least squares regression model. Empirical results show that the SVR method can improve the prediction ability, as evidenced by the superior accumulated rate of return using the test set sample of both markets.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"410 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a principal component analysis (PCA) approach after a double-selection Lasso and applies it to both Chinese and US stock market data. Similar to the idea of Post-Lasso, we perform least squares regression on the principal component factors. To accommodate the nonlinear nature of the data, this paper compares the support vector regression (SVR) model with least squares regression model. Empirical results show that the SVR method can improve the prediction ability, as evidenced by the superior accumulated rate of return using the test set sample of both markets.
基于双重选择的高维因子模型及其在资产定价中的应用
本文提出了双重选择套索后的主成分分析方法,并将其应用于中美两国股市数据。类似于Post-Lasso的思想,我们对主成分因子进行最小二乘回归。为了适应数据的非线性性质,本文将支持向量回归(SVR)模型与最小二乘回归模型进行了比较。实证结果表明,支持向量回归方法可以提高预测能力,两个市场的测试集样本的累积收益率都优于支持向量回归方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信