Interpreting large visual similarity matrices

C. Mueller, Benjamin Martin, A. Lumsdaine
{"title":"Interpreting large visual similarity matrices","authors":"C. Mueller, Benjamin Martin, A. Lumsdaine","doi":"10.1109/APVIS.2007.329290","DOIUrl":null,"url":null,"abstract":"Visual similarity matrices (VSMs) are a common technique for visualizing graphs and other types of relational data. While traditionally used for small data sets or well-ordered large data sets, they have recently become popular for visualizing large graphs. However, our experience with users has revealed that large VSMs are difficult to interpret. In this paper, we catalog common structural features found in VSMs and provide graph-based interpretations of the structures. We also discuss implementation details that affect the interpretability of VSMs for large data sets.","PeriodicalId":136557,"journal":{"name":"2007 6th International Asia-Pacific Symposium on Visualization","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 6th International Asia-Pacific Symposium on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APVIS.2007.329290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Visual similarity matrices (VSMs) are a common technique for visualizing graphs and other types of relational data. While traditionally used for small data sets or well-ordered large data sets, they have recently become popular for visualizing large graphs. However, our experience with users has revealed that large VSMs are difficult to interpret. In this paper, we catalog common structural features found in VSMs and provide graph-based interpretations of the structures. We also discuss implementation details that affect the interpretability of VSMs for large data sets.
解释大型视觉相似性矩阵
视觉相似矩阵(Visual similarity matrices, vsm)是一种用于可视化图形和其他类型关系数据的常用技术。虽然传统上用于小数据集或有序的大数据集,但它们最近在可视化大型图方面变得流行。然而,我们与用户打交道的经验表明,大的vsm很难解释。在本文中,我们编目了在vsm中发现的常见结构特征,并提供了基于图的结构解释。我们还讨论了影响大型数据集的vsm可解释性的实现细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信