Automatic programming error class identification with code plagiarism-based clustering

Sébastien Combéfis, A. Schils
{"title":"Automatic programming error class identification with code plagiarism-based clustering","authors":"Sébastien Combéfis, A. Schils","doi":"10.1145/2993270.2993271","DOIUrl":null,"url":null,"abstract":"Online platforms to learn programming are very popular nowadays. These platforms must automatically assess codes submitted by the learners and must provide good quality feedbacks in order to support their learning. Classical techniques to produce useful feedbacks include using unit testing frameworks to perform systematic functional tests of the submitted codes or using code quality assessment tools. This paper explores how to automatically identify error classes by clustering a set of submitted codes, using code plagiarism detection tools to measure the similarity between the codes. The proposed approach and analysis framework are presented in the paper, along with a first experiment using the Code Hunt dataset.","PeriodicalId":147707,"journal":{"name":"Proceedings of the 2nd International Code Hunt Workshop on Educational Software Engineering","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Code Hunt Workshop on Educational Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2993270.2993271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Online platforms to learn programming are very popular nowadays. These platforms must automatically assess codes submitted by the learners and must provide good quality feedbacks in order to support their learning. Classical techniques to produce useful feedbacks include using unit testing frameworks to perform systematic functional tests of the submitted codes or using code quality assessment tools. This paper explores how to automatically identify error classes by clustering a set of submitted codes, using code plagiarism detection tools to measure the similarity between the codes. The proposed approach and analysis framework are presented in the paper, along with a first experiment using the Code Hunt dataset.
基于代码抄袭聚类的编程错误类自动识别
如今,学习编程的在线平台非常流行。这些平台必须自动评估学习者提交的代码,必须提供高质量的反馈,以支持他们的学习。产生有用反馈的经典技术包括使用单元测试框架对提交的代码执行系统的功能测试,或者使用代码质量评估工具。本文探讨了如何通过聚类一组提交的代码来自动识别错误类别,使用代码剽窃检测工具来度量代码之间的相似性。本文介绍了所提出的方法和分析框架,以及使用代码搜索数据集的第一个实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信