An efficient eigenspace updating scheme for high-dimensional systems

Simon Gangl, D. Mongus, B. Žalik
{"title":"An efficient eigenspace updating scheme for high-dimensional systems","authors":"Simon Gangl, D. Mongus, B. Žalik","doi":"10.2478/amcs-2014-0010","DOIUrl":null,"url":null,"abstract":"Abstract Systems based on principal component analysis have developed from exploratory data analysis in the past to current data processing applications which encode and decode vectors of data using a changing projection space (eigenspace). Linear systems, which need to be solved to obtain a constantly updated eigenspace, have increased significantly in their dimensions during this evolution. The basic scheme used for updating the eigenspace, however, has remained basically the same: (re)computing the eigenspace whenever the error exceeds a predefined threshold. In this paper we propose a computationally efficient eigenspace updating scheme, which specifically supports high-dimensional systems from any domain. The key principle is a prior selection of the vectors used to update the eigenspace in combination with an optimized eigenspace computation. The presented theoretical analysis proves the superior reconstruction capability of the introduced scheme, and further provides an estimate of the achievable compression ratios.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"414 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amcs-2014-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Systems based on principal component analysis have developed from exploratory data analysis in the past to current data processing applications which encode and decode vectors of data using a changing projection space (eigenspace). Linear systems, which need to be solved to obtain a constantly updated eigenspace, have increased significantly in their dimensions during this evolution. The basic scheme used for updating the eigenspace, however, has remained basically the same: (re)computing the eigenspace whenever the error exceeds a predefined threshold. In this paper we propose a computationally efficient eigenspace updating scheme, which specifically supports high-dimensional systems from any domain. The key principle is a prior selection of the vectors used to update the eigenspace in combination with an optimized eigenspace computation. The presented theoretical analysis proves the superior reconstruction capability of the introduced scheme, and further provides an estimate of the achievable compression ratios.
一种高效的高维系统特征空间更新方案
基于主成分分析的系统已经从过去的探索性数据分析发展到现在的数据处理应用,利用变化的投影空间(特征空间)对数据向量进行编码和解码。线性系统需要求解以获得不断更新的特征空间,在这种演化过程中,线性系统的维数显著增加。然而,用于更新特征空间的基本方案基本保持不变:(重新)每当错误超过预定义的阈值时计算特征空间。本文提出了一种计算效率高的特征空间更新方案,该方案特别支持来自任何域的高维系统。关键原则是预先选择用于更新特征空间的向量,并结合优化的特征空间计算。理论分析证明了该方案具有较好的重构能力,并进一步给出了可实现压缩比的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信