Multidimensional Association Rules on Tensors

Ryohei Yokobayashi, T. Miura
{"title":"Multidimensional Association Rules on Tensors","authors":"Ryohei Yokobayashi, T. Miura","doi":"10.6025/jcl/2018/9/2/106-119","DOIUrl":null,"url":null,"abstract":"In this work, we propose a framework suitable for multidimensional data mining based on tensor. A Tensor Data Model (TDM) provides us with high order data structure and naive description for information retrieval. Among others, we discuss multidimensional rule mining here. Generally, association rule mining (or extraction of association rules) concerns about co-related transaction records of single predicate, and hard to examine the ones over multiple predicates since it takes heavy timeand spacecomplexities. Here we show TDM allows us to model several operations specific to multidimensional data mining yet to reduce amount of description.","PeriodicalId":198771,"journal":{"name":"International Journal of Computational Linguistics Research","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Linguistics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6025/jcl/2018/9/2/106-119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose a framework suitable for multidimensional data mining based on tensor. A Tensor Data Model (TDM) provides us with high order data structure and naive description for information retrieval. Among others, we discuss multidimensional rule mining here. Generally, association rule mining (or extraction of association rules) concerns about co-related transaction records of single predicate, and hard to examine the ones over multiple predicates since it takes heavy timeand spacecomplexities. Here we show TDM allows us to model several operations specific to multidimensional data mining yet to reduce amount of description.
张量上的多维关联规则
本文提出了一种基于张量的多维数据挖掘框架。张量数据模型(TDM)为信息检索提供了高阶数据结构和朴素描述。其中,我们在这里讨论多维规则挖掘。通常,关联规则挖掘(或关联规则的提取)关注的是单个谓词的关联事务记录,由于时间和空间复杂性,很难检查多个谓词上的事务记录。这里我们展示了TDM允许我们对特定于多维数据挖掘的几个操作进行建模,同时减少了描述的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信